Local problems on stars: A posteriori error estimators, convergence, and performance
HTML articles powered by AMS MathViewer
- by Pedro Morin, Ricardo H. Nochetto and Kunibert G. Siebert;
- Math. Comp. 72 (2003), 1067-1097
- DOI: https://doi.org/10.1090/S0025-5718-02-01463-1
- Published electronically: November 7, 2002
- HTML | PDF | Request permission
Abstract:
A new computable a posteriori error estimator is introduced, which relies on the solution of small discrete problems on stars. It exhibits built-in flux equilibration and is equivalent to the energy error up to data oscillation without any saturation assumption. A simple adaptive strategy is designed, which simultaneously reduces error and data oscillation, and is shown to converge without mesh pre-adaptation nor explicit knowledge of constants. Numerical experiments reveal a competitive performance, show extremely good effectivity indices, and yield quasi-optimal meshes.References
- Mark Ainsworth and Ivo Babuška, Reliable and robust a posteriori error estimating for singularly perturbed reaction-diffusion problems, SIAM J. Numer. Anal. 36 (1999), no. 2, 331–353. MR 1668250, DOI 10.1137/S003614299732187X
- Mark Ainsworth and J. Tinsley Oden, A unified approach to a posteriori error estimation using element residual methods, Numer. Math. 65 (1993), no. 1, 23–50. MR 1217437, DOI 10.1007/BF01385738
- I. Babuška and A. Miller, A feedback finite element method with a posteriori error estimation. I. The finite element method and some basic properties of the a posteriori error estimator, Comput. Methods Appl. Mech. Engrg. 61 (1987), no. 1, 1–40. MR 880421, DOI 10.1016/0045-7825(87)90114-9
- R. E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Math. Comp. 44 (1985), no. 170, 283–301. MR 777265, DOI 10.1090/S0025-5718-1985-0777265-X
- Carsten Carstensen and Stefan A. Funken, Fully reliable localized error control in the FEM, SIAM J. Sci. Comput. 21 (1999/00), no. 4, 1465–1484. MR 1742328, DOI 10.1137/S1064827597327486
- Willy Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal. 33 (1996), no. 3, 1106–1124. MR 1393904, DOI 10.1137/0733054
- W. Dörfler and R.H. Nochetto, Small data oscillation implies the saturation assumption, Numer. Math., 91 (2002), 1–12.
- R.G. Durán and M.A. Muschietti, An explicit right inverse of the divergence operator in $W_0^{1,p}(\Omega )^n$, Studia Math., 148 (2001), 207–219.
- R. Bruce Kellogg, On the Poisson equation with intersecting interfaces, Applicable Anal. 4 (1974/75), 101–129. MR 393815, DOI 10.1080/00036817408839086
- Alois Kufner, Weighted Sobolev spaces, Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], vol. 31, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1980. With German, French and Russian summaries. MR 664599
- Pedro Morin, Ricardo H. Nochetto, and Kunibert G. Siebert, Data oscillation and convergence of adaptive FEM, SIAM J. Numer. Anal. 38 (2000), no. 2, 466–488. MR 1770058, DOI 10.1137/S0036142999360044
- P. Morin, R.H. Nochetto and K.G. Siebert, Basic principles for convergence of adaptive higher-order FEM — Application to linear elasticity, in preparation.
- Jindřich Nečas, Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 16 (1962), 305–326 (French). MR 163054
- Ricardo H. Nochetto, Removing the saturation assumption in a posteriori error analysis, Istit. Lombardo Accad. Sci. Lett. Rend. A 127 (1993), no. 1, 67–82 (1994) (English, with Italian summary). MR 1284844
- A. Schmidt and K.G. Siebert, ALBERT—Software for scientific computations and applications, Acta Math. Univ. Comenianae 70 (2001), 105-122.
- A. Schmidt and K.G. Siebert, ALBERT: An adaptive hierarchical finite element toolbox, Documentation, Preprint 06/2000 Universität Freiburg, 244 p.
- T. Strouboulis, I. Babuška, and S. K. Gangaraj, Guaranteed computable bounds for the exact error in the finite element solution. II. Bounds for the energy norm of the error in two dimensions, Internat. J. Numer. Methods Engrg. 47 (2000), no. 1-3, 427–475. Richard H. Gallagher Memorial Issue. MR 1744296, DOI 10.1002/(SICI)1097-0207(20000110/30)47:1/3<427::AID-NME779>3.3.CO;2-T
- R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner, 1996.
Bibliographic Information
- Pedro Morin
- Affiliation: Departamento de Matemática, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829, 3000 Santa Fe, Argentina
- Email: pmorin@math.unl.edu.ar
- Ricardo H. Nochetto
- Affiliation: Department of Mathematics and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742
- MR Author ID: 131850
- Email: rhn@math.umd.edu
- Kunibert G. Siebert
- Affiliation: Institut für Angewandte Mathematik, Hermann-Herder-Str. 10, 79104 Freiburg, Germany
- Email: kunibert@mathematik.uni-freiburg.de
- Received by editor(s): October 12, 2000
- Received by editor(s) in revised form: September 26, 2001
- Published electronically: November 7, 2002
- Additional Notes: The first author was partially supported by CONICET of Argentina, NSF Grant DMS-9971450, and NSF/DAAD Grant INT-9910086. This work was developed while this author was visiting the University of Maryland
The second author was partially supported by NSF Grant DMS-9971450 and NSF/DAAD Grant INT-9910086
The third author was partially suported by DAAD/NSF grant “Projektbezogene Förderung des Wissenschaftleraustauschs in den Natur-, Ingenieur- und den Sozialwissenschaften mit der NSF”. Part of this work was developed while this author was visiting the University of Maryland - © Copyright 2002 American Mathematical Society
- Journal: Math. Comp. 72 (2003), 1067-1097
- MSC (2000): Primary 65N12, 65N15, 65N30, 65N50, 65Y20
- DOI: https://doi.org/10.1090/S0025-5718-02-01463-1
- MathSciNet review: 1972728