Finite element approximation of spectral problems with Neumann boundary conditions on curved domains
HTML articles powered by AMS MathViewer
- by Erwin Hernández and Rodolfo Rodríguez;
- Math. Comp. 72 (2003), 1099-1115
- DOI: https://doi.org/10.1090/S0025-5718-02-01467-9
- Published electronically: December 3, 2002
- PDF | Request permission
Abstract:
This paper deals with the finite element approximation of the spectral problem for the Laplace equation with Neumann boundary conditions on a curved nonconvex domain $\Omega$. Convergence and optimal order error estimates are proved for standard piecewise linear continuous elements on a discrete polygonal domain $\Omega _h\not \subset \Omega$ in the framework of the abstract spectral approximation theory.References
- I. Babuška and J. Osborn, Eigenvalue problems in Handbook of Numerical Analysis, Vol II, P.G. Ciarlet and J.L. Lions, eds., North Holland, Amsterdam, 1991, pp. 641–787.
- Christine Bernardi, Optimal finite-element interpolation on curved domains, SIAM J. Numer. Anal. 26 (1989), no. 5, 1212–1240 (English, with French summary). MR 1014883, DOI 10.1137/0726068
- Daniele Boffi, Franco Brezzi, and Lucia Gastaldi, On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form, Math. Comp. 69 (2000), no. 229, 121–140. MR 1642801, DOI 10.1090/S0025-5718-99-01072-8
- Daniele Boffi, Franco Brezzi, and Lucia Gastaldi, On the convergence of eigenvalues for mixed formulations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), no. 1-2, 131–154 (1998). Dedicated to Ennio De Giorgi. MR 1655512
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 1994. MR 1278258, DOI 10.1007/978-1-4757-4338-8
- James H. Bramble and J. Thomas King, A robust finite element method for nonhomogeneous Dirichlet problems in domains with curved boundaries, Math. Comp. 63 (1994), no. 207, 1–17. MR 1242055, DOI 10.1090/S0025-5718-1994-1242055-6
- P. G. Ciarlet and J.-L. Lions (eds.), Handbook of numerical analysis. Vol. II, Handbook of Numerical Analysis, II, North-Holland, Amsterdam, 1991. Finite element methods. Part 1. MR 1115235
- P. G. Ciarlet and P.-A. Raviart, Interpolation theory over curved elements, with applications to finite element methods, Comput. Methods Appl. Mech. Engrg. 1 (1972), 217–249. MR 375801, DOI 10.1016/0045-7825(72)90006-0
- Todd Dupont and Ridgway Scott, Polynomial approximation of functions in Sobolev spaces, Math. Comp. 34 (1980), no. 150, 441–463. MR 559195, DOI 10.1090/S0025-5718-1980-0559195-7
- M. Feistauer, On the finite element approximation of functions with noninteger derivatives, Numer. Funct. Anal. Optim. 10 (1989), no. 1-2, 91–110. MR 978805, DOI 10.1080/01630568908816293
- Miloslav Feistauer and Alexander Ženíšek, Finite element solution of nonlinear elliptic problems, Numer. Math. 50 (1987), no. 4, 451–475. MR 875168, DOI 10.1007/BF01396664
- Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR 851383, DOI 10.1007/978-3-642-61623-5
- P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 775683
- M.-P. Lebaud, Error estimate in an isoparametric finite element eigenvalue problem, Math. Comp. 63 (1994), no. 207, 19–40. MR 1226814, DOI 10.1090/S0025-5718-1994-1226814-1
- John E. Osborn, Spectral approximation for compact operators, Math. Comput. 29 (1975), 712–725. MR 383117, DOI 10.1090/S0025-5718-1975-0383117-3
- P.-A. Raviart and J.-M. Thomas, Introduction à l’analyse numérique des équations aux dérivées partielles, Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree], Masson, Paris, 1983 (French). MR 773854
- Ridgway Scott, Interpolated boundary conditions in the finite element method, SIAM J. Numer. Anal. 12 (1975), 404–427. MR 386304, DOI 10.1137/0712032
- Gilbert Strang and George J. Fix, An analysis of the finite element method, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1973. MR 443377
- M. Vanmaele and A. Ženíšek, External finite element approximations of eigenvalue problems, RAIRO Modél. Math. Anal. Numér. 27 (1993), no. 5, 565–589 (English, with English and French summaries). MR 1239816, DOI 10.1051/m2an/1993270505651
- M. Vanmaele and A. Ženíšek, External finite-element approximations of eigenfunctions in the case of multiple eigenvalues, Proceedings of the Fifth International Congress on Computational and Applied Mathematics (Leuven, 1992), 1994, pp. 51–66. MR 1284251, DOI 10.1016/0377-0427(94)90289-5
- Michèle Vanmaele and Alexander Ženíšek, The combined effect of numerical integration and approximation of the boundary in the finite element method for eigenvalue problems, Numer. Math. 71 (1995), no. 2, 253–273. MR 1347167, DOI 10.1007/s002110050144
- A. Ženíšek, Nonlinear elliptic and evolution problems and their finite element approximations, Computational Mathematics and Applications, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1990. With a foreword by P.-A. Raviart. MR 1086876
- Miloš Zlámal, Curved elements in the finite element method. I, SIAM J. Numer. Anal. 10 (1973), 229–240. MR 395263, DOI 10.1137/0710022
Bibliographic Information
- Erwin Hernández
- Affiliation: Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile
- Email: erwin@ing-mat.udec.cl
- Rodolfo Rodríguez
- Affiliation: Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile
- Email: rodolfo@ing-mat.udec.cl
- Received by editor(s): February 2, 2001
- Received by editor(s) in revised form: September 28, 2001
- Published electronically: December 3, 2002
- Additional Notes: The first author was supported by FONDECYT 2000114 (Chile). The second author was partially supported by FONDECYT 1990346 and FONDAP in Applied Mathematics (Chile).
- © Copyright 2002 American Mathematical Society
- Journal: Math. Comp. 72 (2003), 1099-1115
- MSC (2000): Primary 65N25, 65N30; Secondary 70J30
- DOI: https://doi.org/10.1090/S0025-5718-02-01467-9
- MathSciNet review: 1972729