Finite element superconvergence on Shishkin mesh for 2-D convection-diffusion problems
HTML articles powered by AMS MathViewer
- by Zhimin Zhang;
- Math. Comp. 72 (2003), 1147-1177
- DOI: https://doi.org/10.1090/S0025-5718-03-01486-8
- Published electronically: February 3, 2003
- PDF | Request permission
Abstract:
In this work, the bilinear finite element method on a Shishkin mesh for convection-diffusion problems is analyzed in the two-dimensional setting. A superconvergence rate $O(N^{-2}\ln ^2 N + \epsilon N^{-1.5}\ln N)$ in a discrete $\epsilon$-weighted energy norm is established under certain regularity assumptions. This convergence rate is uniformly valid with respect to the singular perturbation parameter $\epsilon$. Numerical tests indicate that the rate $O(N^{-2}\ln ^2 N)$ is sharp for the boundary layer terms. As a by-product, an $\epsilon$-uniform convergence of the same order is obtained for the $L^2$-norm. Furthermore, under the same regularity assumption, an $\epsilon$-uniform convergence of order $N^{-3/2}\ln ^{5/2} N + \epsilon N^{-1}\ln ^{1/2} N$ in the $L^\infty$ norm is proved for some mesh points in the boundary layer region.References
- C. Chen and Y. Huang, High Accuracy Theory of Finite Element Methods (in Chinese), Hunan Science Press, P.R. China, 1995.
- K. Gerdes, J. M. Melenk, C. Schwab, and D. Schötzau, The $hp$-version of the streamline diffusion finite element method in two space dimensions, Math. Models Methods Appl. Sci. 11 (2001), no. 2, 301–337. MR 1820676, DOI 10.1142/S0218202501000878
- H. Han and R. B. Kellogg, Differentiability properties of solutions of the equation $-\epsilon ^2\Delta u+ru=f(x,y)$ in a square, SIAM J. Math. Anal. 21 (1990), no. 2, 394–408. MR 1038899, DOI 10.1137/0521022
- C. Johnson, A. H. Schatz, and L. B. Wahlbin, Crosswind smear and pointwise errors in streamline diffusion finite element methods, Math. Comp. 49 (1987), no. 179, 25–38. MR 890252, DOI 10.1090/S0025-5718-1987-0890252-8
- Bruce Kellogg, Boundary layers and corner singularities for a self-adjoint problem, Boundary value problems and integral equations in nonsmooth domains (Luminy, 1993) Lecture Notes in Pure and Appl. Math., vol. 167, Dekker, New York, 1995, pp. 121–149. MR 1301345
- M. Křížek, P. Neittaanmäki, and R. Stenberg (eds.), Finite element methods, Lecture Notes in Pure and Applied Mathematics, vol. 196, Marcel Dekker, Inc., New York, 1998. Superconvergence, post-processing, and a posteriori estimates; Papers from the conference held at the University of Jyväskylä, Jyväskylä, 1997. MR 1602809
- R. D. Lazarov, L. Tobiska, and P. S. Vassilevski, Streamline diffusion least-squares mixed finite element methods for convection-diffusion problems, East-West J. Numer. Math. 5 (1997), no. 4, 249–264. MR 1604848
- Jichun Li and Mary F. Wheeler, Uniform convergence and superconvergence of mixed finite element methods on anisotropically refined grids, SIAM J. Numer. Anal. 38 (2000), no. 3, 770–798. MR 1781203, DOI 10.1137/S0036142999351212
- Q. Lin and N. Yan, Construction and Analysis of High Efficient Finite Elements (in Chinese), Hebei University Press, P.R. China, 1996.
- Torsten Linß and Martin Stynes, Asymptotic analysis and Shishkin-type decomposition for an elliptic convection-diffusion problem, J. Math. Anal. Appl. 261 (2001), no. 2, 604–632. MR 1853059, DOI 10.1006/jmaa.2001.7550
- J. M. Melenk and C. Schwab, $HP$ FEM for reaction-diffusion equations. I. Robust exponential convergence, SIAM J. Numer. Anal. 35 (1998), no. 4, 1520–1557. MR 1626030, DOI 10.1137/S0036142997317602
- J. M. Melenk and C. Schwab, Analytic regularity for a singularly perturbed problem, SIAM J. Math. Anal. 30 (1999), no. 2, 379–400. MR 1664765, DOI 10.1137/S0036141097317542
- J. J. H. Miller, E. O’Riordan, and G. I. Shishkin, Fitted numerical methods for singular perturbation problems, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. Error estimates in the maximum norm for linear problems in one and two dimensions. MR 1439750, DOI 10.1142/2933
- K. W. Morton, Numerical solution of convection-diffusion problems, Applied Mathematics and Mathematical Computation, vol. 12, Chapman & Hall, London, 1996. MR 1445295
- H.-G. Roos, Layer-adapted grids for singular perturbation problems, ZAMM Z. Angew. Math. Mech. 78 (1998), no. 5, 291–309 (English, with English and German summaries). MR 1625200, DOI 10.1002/(SICI)1521-4001(199805)78:5<291::AID-ZAMM291>3.0.CO;2-R
- H.-G. Roos, M. Stynes, and L. Tobiska, Numerical methods for singularly perturbed differential equations, Springer Series in Computational Mathematics, vol. 24, Springer-Verlag, Berlin, 1996. Convection-diffusion and flow problems. MR 1477665, DOI 10.1007/978-3-662-03206-0
- A. H. Schatz, I. H. Sloan, and L. B. Wahlbin, Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point, SIAM J. Numer. Anal. 33 (1996), no. 2, 505–521. MR 1388486, DOI 10.1137/0733027
- A. H. Schatz and L. B. Wahlbin, On the finite element method for singularly perturbed reaction-diffusion problems in two and one dimensions, Math. Comp. 40 (1983), no. 161, 47–89. MR 679434, DOI 10.1090/S0025-5718-1983-0679434-4
- Christoph Schwab and Manil Suri, The $p$ and $hp$ versions of the finite element method for problems with boundary layers, Math. Comp. 65 (1996), no. 216, 1403–1429. MR 1370857, DOI 10.1090/S0025-5718-96-00781-8
- G.I. Shishkin, Discrete approximation of singularly perturbed elliptic and parabolic problems (in Russian), Russian Academy of Sciences, Ural Section, Ekaterinburg, 1992.
- Martin Stynes and Eugene O’Riordan, A uniformly convergent Galerkin method on a Shishkin mesh for a convection-diffusion problem, J. Math. Anal. Appl. 214 (1997), no. 1, 36–54. MR 1645503, DOI 10.1006/jmaa.1997.5581
- P. G. Ciarlet and J.-L. Lions (eds.), Handbook of numerical analysis. Vol. II, Handbook of Numerical Analysis, II, North-Holland, Amsterdam, 1991. Finite element methods. Part 1. MR 1115235
- Lars B. Wahlbin, Superconvergence in Galerkin finite element methods, Lecture Notes in Mathematics, vol. 1605, Springer-Verlag, Berlin, 1995. MR 1439050, DOI 10.1007/BFb0096835
- Z. Zhang, Superconvergent approximation of singularly perturbed problems, Numer. Meth. PDEs 18 (2002), 374–395.
- J. C. Oxtoby and S. M. Ulam, On the existence of a measure invariant under a transformation, Ann. of Math. (2) 40 (1939), 560–566. MR 97, DOI 10.2307/1968940
Bibliographic Information
- Zhimin Zhang
- Affiliation: Department of Mathematics, Wayne State University, Detroit, Michigan 48202
- MR Author ID: 303173
- Email: zzhang@math.wayne.edu
- Received by editor(s): July 19, 2000
- Received by editor(s) in revised form: December 10, 2001
- Published electronically: February 3, 2003
- Additional Notes: This research was partially supported by the National Science Foundation grants DMS-0074301, DMS-0079743, and INT-0196139
- © Copyright 2003 American Mathematical Society
- Journal: Math. Comp. 72 (2003), 1147-1177
- MSC (2000): Primary 65N30, 65N15
- DOI: https://doi.org/10.1090/S0025-5718-03-01486-8
- MathSciNet review: 1972731