On the convergence of entropy consistent schemes for lubrication type equations in multiple space dimensions
HTML articles powered by AMS MathViewer
- by Günther Grün;
- Math. Comp. 72 (2003), 1251-1279
- DOI: https://doi.org/10.1090/S0025-5718-03-01492-3
- Published electronically: January 8, 2003
- PDF | Request permission
Abstract:
We present nonnegativity-preserving finite element schemes for a general class of thin film equations in multiple space dimensions. The equations are fourth order degenerate parabolic, and may contain singular terms of second order which are to model van der Waals interactions. A subtle discretization of the arising nonlinearities allows us to prove discrete counterparts of the essential estimates found in the continuous setting. By use of the entropy estimate, strong convergence results for discrete solutions are obtained. In particular, the limit of discrete fluxes $M_h(U_h)\nabla P_h$ will be identified with the flux $\mathcal M(u)\nabla (W’(u)-\Delta u)$ in the continuous setting. As a by-product, first results on existence and positivity almost everywhere of solutions to equations with singular lower order terms can be established in the continuous setting.References
- Lawrence M. Graves, The Weierstrass condition for multiple integral variation problems, Duke Math. J. 5 (1939), 656–660. MR 99
- John W. Barrett, James F. Blowey, and Harald Garcke, Finite element approximation of the Cahn-Hilliard equation with degenerate mobility, SIAM J. Numer. Anal. 37 (1999), no. 1, 286–318. MR 1742748, DOI 10.1137/S0036142997331669
- J. Barrett, J. Blowey, and H. Garcke. On fully practical finite element approximations of degenerate Cahn-Hilliard systems. Math. Model. Numer. Anal., 35:713-748, 2001.
- J. Becker, G. Grün, R. Seemann, H. Mantz, K. Jacobs, K.R. Mecke, and R. Blossey. Complex dewetting scenarios captured by thin film models. Nature Materials. In press.
- Elena Beretta, Michiel Bertsch, and Roberta Dal Passo, Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation, Arch. Rational Mech. Anal. 129 (1995), no. 2, 175–200. MR 1328475, DOI 10.1007/BF00379920
- J. I. Diaz, M. A. Herrero, A. Liñán, and J. L. Vázquez (eds.), Free boundary problems: theory and applications, Pitman Research Notes in Mathematics Series, vol. 323, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1995. MR 1342322
- J. C. Oxtoby and S. M. Ulam, On the existence of a measure invariant under a transformation, Ann. of Math. (2) 40 (1939), 560–566. MR 97, DOI 10.2307/1968940
- Francisco Bernis and Avner Friedman, Higher order nonlinear degenerate parabolic equations, J. Differential Equations 83 (1990), no. 1, 179–206. MR 1031383, DOI 10.1016/0022-0396(90)90074-Y
- A. L. Bertozzi and M. Pugh, The lubrication approximation for thin viscous films: regularity and long-time behavior of weak solutions, Comm. Pure Appl. Math. 49 (1996), no. 2, 85–123. MR 1371925, DOI 10.1002/(SICI)1097-0312(199602)49:2<85::AID-CPA1>3.3.CO;2-V
- Michiel Bertsch, Roberta Dal Passo, Harald Garcke, and Günther Grün, The thin viscous flow equation in higher space dimensions, Adv. Differential Equations 3 (1998), no. 3, 417–440. MR 1751951
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 520174
- Roberta Dal Passo, Harald Garcke, and Günther Grün, On a fourth-order degenerate parabolic equation: global entropy estimates, existence, and qualitative behavior of solutions, SIAM J. Math. Anal. 29 (1998), no. 2, 321–342. MR 1616558, DOI 10.1137/S0036141096306170
- R. Dal Passo, L. Giacomelli, and G. Grün. A waiting time phenomenon for thin film equations. Ann. Scuola Norm. Sup. Pisa, XXX:437–463, 2001.
- Charles M. Elliott and Harald Garcke, On the Cahn-Hilliard equation with degenerate mobility, SIAM J. Math. Anal. 27 (1996), no. 2, 404–423. MR 1377481, DOI 10.1137/S0036141094267662
- C. M. Elliott and A. M. Stuart, The global dynamics of discrete semilinear parabolic equations, SIAM J. Numer. Anal. 30 (1993), no. 6, 1622–1663. MR 1249036, DOI 10.1137/0730084
- G. Grün, Degenerate parabolic differential equations of fourth order and a plasticity model with non-local hardening, Z. Anal. Anwendungen 14 (1995), no. 3, 541–574. MR 1362530, DOI 10.4171/ZAA/639
- G. Grün. On the numerical simulation of wetting phenomena. In W. Hackbusch and S. Sauter, editors, Proceedings of the 15th GAMM-Seminar Kiel, Numerical methods of composite materials. Vieweg-Verlag, Braunschweig. To appear.
- Günther Grün and Martin Rumpf, Nonnegativity preserving convergent schemes for the thin film equation, Numer. Math. 87 (2000), no. 1, 113–152. MR 1800156, DOI 10.1007/s002110000197
- G. Grün and M. Rumpf. Simulation of singularities and instabilities in thin film flow. Euro. J. Appl. Math., 12:293–320, 2001.
- C. Neto, K. Jacobs, R. Seemann, R. Blossey, J. Becker, and G. Grün. Satellite hole formation during dewetting: experiment and simulation. Submitted for publication.
- A. Oron, S.H. Davis, and S.G. Bankoff. Long-scale evolution of thin liquid films. Reviews of Modern Physics, 69:932–977, 1997.
- Kôsaku Yosida, Functional analysis, 4th ed., Die Grundlehren der mathematischen Wissenschaften, Band 123, Springer-Verlag, New York-Heidelberg, 1974. MR 350358
- L. Zhornitskaya and A. L. Bertozzi, Positivity-preserving numerical schemes for lubrication-type equations, SIAM J. Numer. Anal. 37 (2000), no. 2, 523–555. MR 1740768, DOI 10.1137/S0036142998335698
Bibliographic Information
- Günther Grün
- Affiliation: Universität Bonn, Institut für Angewandte Mathematik, Beringstr. 6, 53115 Bonn, Germany
- Email: gg@iam.uni-bonn.de
- Received by editor(s): August 14, 2000
- Received by editor(s) in revised form: September 21, 2001
- Published electronically: January 8, 2003
- © Copyright 2003 American Mathematical Society
- Journal: Math. Comp. 72 (2003), 1251-1279
- MSC (2000): Primary 35K35, 35K55, 35K65, 35R35, 65M12, 65M60, 76D08
- DOI: https://doi.org/10.1090/S0025-5718-03-01492-3
- MathSciNet review: 1972735