On the orbit-stabilizer problem for integral matrix actions of polycyclic groups
HTML articles powered by AMS MathViewer
- by Bettina Eick and Gretchen Ostheimer;
- Math. Comp. 72 (2003), 1511-1529
- DOI: https://doi.org/10.1090/S0025-5718-03-01493-5
- Published electronically: February 3, 2003
- PDF | Request permission
Abstract:
We present an algorithm to solve the orbit-stabilizer problem for a polycyclic group $G$ acting as a subgroup of $GL(d, \mathbb Z)$ on the elements of $\mathbb Q^d$. We report on an implementation of our method and use this to observe that the algorithm is practical.References
- Gilbert Baumslag, Frank B. Cannonito, Derek J. Robinson, and Dan Segal, The algorithmic theory of polycyclic-by-finite groups, J. Algebra 142 (1991), no. 1, 118–149. MR 1125209, DOI 10.1016/0021-8693(91)90221-S
- G. Butler, Fundamental algorithms for permutation groups, Lecture Notes in Computer Science, vol. 559, Springer-Verlag, Berlin, 1991. MR 1225579, DOI 10.1007/3-540-54955-2
- Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 1228206, DOI 10.1007/978-3-662-02945-9
- M. Daberkow, C. Fieker, J. Klüners, M. Pohst, K. Roegner, M. Schörnig, and K. Wildanger, KANT V4, J. Symbolic Comput. 24 (1997), no. 3-4, 267–283. Computational algebra and number theory (London, 1993). MR 1484479, DOI 10.1006/jsco.1996.0126
- Karel Dekimpe, Almost-Bieberbach groups: affine and polynomial structures, Lecture Notes in Mathematics, vol. 1639, Springer-Verlag, Berlin, 1996. MR 1482520, DOI 10.1007/BFb0094472
- Karel Dekimpe and Bettina Eick, Aclib, 2000, A GAP share package, see [The GAP Group, GAP—Groups, Algorithms and Programming, http://www.gap-system.org, 2000].
- John D. Dixon, The orbit-stabilizer problem for linear groups, Canad. J. Math. 37 (1985), no. 2, 238–259. MR 780623, DOI 10.4153/CJM-1985-015-4
- Bettina Eick, Algorithms for polycyclic groups, Habilitationsschrift, Universität Kassel, 2001.
- Bettina Eick and Werner Nickel, Polycyclic, 2000, A GAP share package, see [The GAP Group, GAP—Groups, Algorithms and Programming, http://www.gap-system.org, 2000].
- R. Laue, J. Neubüser, and U. Schoenwaelder, Algorithms for finite soluble groups and the SOGOS system, Computational group theory (Durham, 1982) Academic Press, London, 1984, pp. 105–135. MR 760654
- Eddie H. Lo, A polycyclic quotient algorithm, J. Symbolic Comput. 25 (1998), no. 1, 61–97. MR 1600618, DOI 10.1006/jsco.1997.0167
- Gretchen Ostheimer, Practical algorithms for polycyclic matrix groups, J. Symbolic Comput. 28 (1999), no. 3, 361–379. MR 1716421, DOI 10.1006/jsco.1999.0287
- Michael E. Pohst, Computational algebraic number theory, DMV Seminar, vol. 21, Birkhäuser Verlag, Basel, 1993. MR 1243639, DOI 10.1007/978-3-0348-8589-8
- Charles C. Sims, Computation with finitely presented groups, Encyclopedia of Mathematics and its Applications, vol. 48, Cambridge University Press, Cambridge, 1994. MR 1267733, DOI 10.1017/CBO9780511574702
- The GAP Group, GAP—Groups, Algorithms and Programming, http://www.gap-system.org, 2000.
Bibliographic Information
- Bettina Eick
- Affiliation: Institut für Geometrie, Universität Braunschweig, 38106 Braunschweig, Germany
- MR Author ID: 614875
- Email: beick@tu-bs.de
- Gretchen Ostheimer
- Affiliation: Department of Computer Science, 103 Hofstra University, Hempstead, New York 11549
- Email: cscgzo@husun3.Hofstra.edu
- Received by editor(s): July 9, 2001
- Published electronically: February 3, 2003
- Additional Notes: The authors thank Werner Nickel for useful discussions.
- © Copyright 2003 American Mathematical Society
- Journal: Math. Comp. 72 (2003), 1511-1529
- MSC (2000): Primary 20F16, 20-04; Secondary 68W30
- DOI: https://doi.org/10.1090/S0025-5718-03-01493-5
- MathSciNet review: 1972750