Short universal generators via generalized ratio-of-uniforms method
HTML articles powered by AMS MathViewer
- by Josef Leydold;
- Math. Comp. 72 (2003), 1453-1471
- DOI: https://doi.org/10.1090/S0025-5718-03-01511-4
- Published electronically: March 26, 2003
- PDF | Request permission
Abstract:
We use inequalities to design short universal algorithms that can be used to generate random variates from large classes of univariate continuous or discrete distributions (including all log-concave distributions). The expected time is uniformly bounded over all these distributions for a particular generator. The algorithms can be implemented in a few lines of high level language code.References
- Ahrens, J. H. (1993). Sampling from general distributions by suboptimal division of domains. Grazer Math. Berichte 319, 20 pp.
- J. H. Ahrens, A one-table method for sampling from continuous and discrete distributions, Computing 54 (1995), no. 2, 127–146 (English, with English and German summaries). MR 1318330, DOI 10.1007/BF02238128
- Derflinger, G. (2000). private communication.
- Derflinger, G., W. Hörmann, and J. Leydold (2002). Universal methods of nonuniform random variate generation. in preparation.
- Luc Devroye, On the use of probability inequalities in random variate generation, J. Statist. Comput. Simulation 20 (1984), no. 2, 91–100. MR 775472, DOI 10.1080/00949658408810759
- L. Devroye, A simple algorithm for generating random variates with a log-concave density, Computing 33 (1984), no. 3-4, 247–257 (English, with German summary). MR 773927, DOI 10.1007/BF02242271
- Luc Devroye, Nonuniform random variate generation, Springer-Verlag, New York, 1986. MR 836973, DOI 10.1007/978-1-4613-8643-8
- L. Devroye, A simple generator for discrete log-concave distributions, Computing 39 (1987), no. 1, 87–91 (English, with German summary). MR 908559, DOI 10.1007/BF02307716
- Dieter, U. (1989). Mathematical aspects of various methods for sampling from classical distributions. In E. A. Mc Nair, K. J. Musselman, and P. Heidelberger (Eds.), Proc. 1989 Winter Simulation Conf., pp. 477–483.
- Evans, M. and T. Swartz (1998). Random variable generation using concavity properties of transformed densities. Journal of Computational and Graphical Statistics 7(4), 514–528.
- Gilks, W. R. and P. Wild (1992). Adaptive rejection sampling for Gibbs sampling. Applied Statistics 41(2), 337–348.
- I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, 5th ed., Academic Press, Inc., Boston, MA, 1994. Translation edited and with a preface by Alan Jeffrey. MR 1243179
- Wolfgang Hörmann, A rejection technique for sampling from $T$-concave distributions, ACM Trans. Math. Software 21 (1995), no. 2, 182–193. MR 1342355, DOI 10.1145/203082.203089
- Hörmann, W. and G. Derflinger (1996). Rejection-inversion to generate variates from monotone discrete distributions. ACM TOMACS 6(3), 169–184.
- Hörmann, W. and G. Derflinger (1997). An automatic generator for a large class of unimodal discrete distributions. In A. R. Kaylan and A. Lehmann (Eds.), ESM 97, pp. 139–144.
- Kinderman, A. J. and F. J. Monahan (1977). Computer generation of random variables using the ratio of uniform deviates. ACM Trans. Math. Software 3(3), 257–260.
- Leydold, J. (2000a). Automatic sampling with the ratio-of-uniforms method. ACM Trans. Math. Software 26(1), 78–98.
- J. Leydold, A note on transformed density rejection, Computing 65 (2000), no. 2, 187–192. MR 1807716, DOI 10.1007/s006070070019
- Leydold, J. (2001). A simple universal generator for continuous and discrete univariate T-concave distributions. ACM Trans. Math. Software 27(1), 66–82.
- Ernst Stadlober, Sampling from Poisson, binomial and hypergeometric distributions: ratio of uniforms as a simple and fast alternative, Berichte der Mathematisch-Statistischen Sektion in der Forschungsgesellschaft Joanneum [Reports of the Mathematical-Statistical Section of the Research Society Joanneum], vol. 303, Forschungszentrum Graz, Mathematisch-Statistische Sektion, Graz, 1989. MR 996245
- Wakefield, J. C., A. E. Gelfand, and A. F. M. Smith (1991). Efficient generation of random variates via the ratio-of-uniforms method. Statist. Comput. 1(2), 129–133.
Bibliographic Information
- Josef Leydold
- Affiliation: University of Economics and Business Administration, Department for Applied Statistics and Data Processing, Augasse 2-6, A-1090 Vienna, Austria
- Email: Josef.Leydold@statistik.wu-wien.ac.at
- Received by editor(s): August 8, 2000
- Published electronically: March 26, 2003
- Additional Notes: This work was supported by the Austrian Science Foundation (FWF), project no. P12805-MAT
- © Copyright 2003 American Mathematical Society
- Journal: Math. Comp. 72 (2003), 1453-1471
- MSC (2000): Primary 65C10; Secondary 65U05
- DOI: https://doi.org/10.1090/S0025-5718-03-01511-4
- MathSciNet review: 1972746