Maximum-norm estimates for resolvents of elliptic finite element operators
HTML articles powered by AMS MathViewer
- by Nikolai Yu. Bakaev, Vidar Thomée and Lars B. Wahlbin;
- Math. Comp. 72 (2003), 1597-1610
- DOI: https://doi.org/10.1090/S0025-5718-02-01488-6
- Published electronically: December 3, 2002
- PDF | Request permission
Abstract:
Let $\Omega$ be a convex domain with smooth boundary in $R^d$. It has been shown recently that the semigroup generated by the discrete Laplacian for quasi-uniform families of piecewise linear finite element spaces on $\Omega$ is analytic with respect to the maximum-norm, uniformly in the mesh-width. This implies a resolvent estimate of standard form in the maximum-norm outside some sector in the right halfplane, and conversely. Here we show directly that such a resolvent estimate holds outside any sector around the positive real axis, with arbitrarily small angle. This is useful in the study of fully discrete approximations based on $A(\theta )$-stable rational functions, with $\theta$ small.References
- S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959), 623–727. MR 125307, DOI 10.1002/cpa.3160120405
- Nikolai Yu. Bakaev, Maximum norm resolvent estimates for elliptic finite element operators, BIT 41 (2001), no. 2, 215–239. MR 1837395, DOI 10.1023/A:1021934205234
- N. Yu. Bakaev, S. Larsson, and V. Thomée, Long time behaviour of backward difference type methods for parabolic equations with memory in Banach space, East-West J. Numer. Math. 6 (1998), no. 3, 185–206. MR 1652817
- Chuan Miao Chen and Yun Qing Huang, $W^{1,p}$ stability of finite element approximations of elliptic problems, Hunan Ann. Math. 6 (1986), no. 2, 81–89 (Chinese, with English summary). MR 1110691
- H. Chen, An $L^2$ and $L^\infty -$Error Analysis for Parabolic Finite Element Equations with Applications by Superconvergence and Error Expansions, Thesis, Heidelberg University 1993.
- M. Crouzeix, S. Larsson, and V. Thomée, Resolvent estimates for elliptic finite element operators in one dimension, Math. Comp. 63 (1994), no. 207, 121–140. MR 1242058, DOI 10.1090/S0025-5718-1994-1242058-1
- Michel Crouzeix and Vidar Thomée, Resolvent estimates in $l_p$ for discrete Laplacians on irregular meshes and maximum-norm stability of parabolic finite difference schemes, Comput. Methods Appl. Math. 1 (2001), no. 1, 3–17. MR 1839793, DOI 10.2478/cmam-2001-0001
- Jean Descloux, On finite element matrices, SIAM J. Numer. Anal. 9 (1972), 260–265. MR 309292, DOI 10.1137/0709025
- G. Da Prato and E. Sinestrari, Differential operators with nondense domain, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), no. 2, 285–344 (1988). MR 939631
- Jim Douglas Jr., Todd Dupont, and Lars Wahlbin, The stability in $L^{q}$ of the $L^{2}$-projection into finite element function spaces, Numer. Math. 23 (1974/75), 193–197. MR 383789, DOI 10.1007/BF01400302
- H.Fujii, Some remarks on finite element analysis of time-dependent field problems, in Theory and Practice in Finite Element Structural Analysis, University of Tokyo Press (1973), 91-106.
- Richard Haverkamp, Eine Aussage zur $L_{\infty }$-Stabilität und zur genauen Konvergenzordnung der $H^{1}_{0}$-Projektionen, Numer. Math. 44 (1984), no. 3, 393–405 (German, with English summary). MR 757494, DOI 10.1007/BF01405570
- Ju. P. Krasovskiĭ, Isolation of the singularity in Green’s function, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 977–1010 (Russian). MR 223740
- Joachim A. Nitsche and Alfred H. Schatz, Interior estimates for Ritz-Galerkin methods, Math. Comp. 28 (1974), 937–958. MR 373325, DOI 10.1090/S0025-5718-1974-0373325-9
- J. A. Nitsche and Mary F. Wheeler, $L_{\infty }$-boundedness of the finite element Galerkin operator for parabolic problems, Numer. Funct. Anal. Optim. 4 (1981/82), no. 4, 325–353. MR 673316, DOI 10.1080/01630568208816121
- C. Palencia, Maximum norm analysis of completely discrete finite element methods for parabolic problems, SIAM J. Numer. Anal. 33 (1996), no. 4, 1654–1668. MR 1403564, DOI 10.1137/S0036142993259779
- A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486, DOI 10.1007/978-1-4612-5561-1
- Rolf Rannacher, $L^\infty$-stability estimates and asymptotic error expansion for parabolic finite element equations, Extrapolation and defect correction (1990), Bonner Math. Schriften, vol. 228, Univ. Bonn, Bonn, 1991, pp. 74–94. MR 1185533
- Rolf Rannacher and Ridgway Scott, Some optimal error estimates for piecewise linear finite element approximations, Math. Comp. 38 (1982), no. 158, 437–445. MR 645661, DOI 10.1090/S0025-5718-1982-0645661-4
- Alfred H. Schatz, Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids. I. Global estimates, Math. Comp. 67 (1998), no. 223, 877–899. MR 1464148, DOI 10.1090/S0025-5718-98-00959-4
- A. H. Schatz, V. C. Thomée, and L. B. Wahlbin, Maximum norm stability and error estimates in parabolic finite element equations, Comm. Pure Appl. Math. 33 (1980), no. 3, 265–304. MR 562737, DOI 10.1002/cpa.3160330305
- A. H. Schatz, V. Thomée, and L. B. Wahlbin, Stability, analyticity, and almost best approximation in maximum norm for parabolic finite element equations, Comm. Pure Appl. Math. 51 (1998), no. 11-12, 1349–1385. MR 1639143, DOI 10.1002/(SICI)1097-0312(199811/12)51:11/12<1349::AID-CPA5>3.3.CO;2-T
- A. H. Schatz and L. B. Wahlbin, On the quasi-optimality in $L_{\infty }$ of the $\dot H^{1}$-projection into finite element spaces, Math. Comp. 38 (1982), no. 157, 1–22. MR 637283, DOI 10.1090/S0025-5718-1982-0637283-6
- Ridgway Scott, Optimal $L^{\infty }$ estimates for the finite element method on irregular meshes, Math. Comp. 30 (1976), no. 136, 681–697. MR 436617, DOI 10.1090/S0025-5718-1976-0436617-2
- L. Ridgway Scott and Shangyou Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990), no. 190, 483–493. MR 1011446, DOI 10.1090/S0025-5718-1990-1011446-7
- H. Bruce Stewart, Generation of analytic semigroups by strongly elliptic operators, Trans. Amer. Math. Soc. 199 (1974), 141–162. MR 358067, DOI 10.1090/S0002-9947-1974-0358067-4
- Vidar Thomée, Galerkin finite element methods for parabolic problems, Springer Series in Computational Mathematics, vol. 25, Springer-Verlag, Berlin, 1997. MR 1479170, DOI 10.1007/978-3-662-03359-3
- Vidar Thomée and Lars B. Wahlbin, Maximum-norm stability and error estimates in Galerkin methods for parabolic equations in one space variable, Numer. Math. 41 (1983), no. 3, 345–371. MR 712117, DOI 10.1007/BF01418330
- V. Thomée and L. B. Wahlbin, Stability and analyticity in maximum-norm for simplicial Lagrange finite element semidiscretizations of parabolic equations with Dirichlet boundary conditions, Numer. Math. 87 (2000), no. 2, 373–389. MR 1804662, DOI 10.1007/s002110000184
- H. Triebel, Interpolation theory, function spaces, differential operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. MR 500580
- Lars B. Wahlbin, A quasioptimal estimate in piecewise polynomial Galerkin approximation of parabolic problems, Numerical analysis (Dundee, 1981) Lecture Notes in Math., vol. 912, Springer, Berlin-New York, 1982, pp. 230–245. MR 654353
Bibliographic Information
- Nikolai Yu. Bakaev
- Affiliation: Department of Mathematics, Institute of Economics and Business, Berzarina St. 12, Moscow 123298, Russia
- Email: bakaev@postman.ru
- Vidar Thomée
- Affiliation: Department of Mathematics, Chalmers University of Technology, S-41296 Göteborg, Sweden
- MR Author ID: 172250
- Email: thomee@math.chalmers.se
- Lars B. Wahlbin
- Affiliation: Department of mathematics, Cornell University, Ithaca New York 14853
- Email: wahlbin@math.cornell.edu
- Received by editor(s): September 7, 2001
- Received by editor(s) in revised form: March 1, 2002
- Published electronically: December 3, 2002
- Additional Notes: The first author was partly supported by the Swiss National Science Foundation under Grant 20-56577.99
The second and third authors were partly supported by the U.S. National Science Foundation under Grant DMS 0071412 - © Copyright 2002 American Mathematical Society
- Journal: Math. Comp. 72 (2003), 1597-1610
- MSC (2000): Primary 65M12, 65M06, 65M60
- DOI: https://doi.org/10.1090/S0025-5718-02-01488-6
- MathSciNet review: 1986795