On the a posteriori error analysis for equations of prescribed mean curvature
HTML articles powered by AMS MathViewer
- by Francesca Fierro and Andreas Veeser;
- Math. Comp. 72 (2003), 1611-1634
- DOI: https://doi.org/10.1090/S0025-5718-03-01507-2
- Published electronically: March 26, 2003
- PDF | Request permission
Abstract:
We present two approaches to the a posteriori error analysis for prescribed mean curvature equations. The main difference between them concerns the estimation of the residual: without or with computable weights. In the second case, the weights are related to the eigenvalues of the underlying operator and thus provide local and computable information about the conditioning. We analyze the two approaches from a theoretical viewpoint. Moreover, we investigate and compare the performance of the derived indicators in an adaptive procedure. Our theoretical and practical results show that it is advantageous to estimate the residual in a weighted way.References
- Mark Ainsworth and J. Tinsley Oden, A posteriori error estimation in finite element analysis, John Wiley, New York, 2000.
- Eberhard Bänsch, Local mesh refinement in $2$ and $3$ dimensions, Impact Comput. Sci. Engrg. 3 (1991), no. 3, 181–191. MR 1141298, DOI 10.1016/0899-8248(91)90006-G
- Eberhard Bänsch, An adaptive finite-element strategy for the three-dimensional time-dependent Navier-Stokes equations, J. Comput. Appl. Math. 36 (1991), no. 1, 3–28. MR 1122956, DOI 10.1016/0377-0427(91)90224-8
- Ivo Babuška and Werner C. Rheinboldt, A-posteriori error estimates for the finite element method, Internat. J. Numer. Methods Engrg. 12 (1978), 1597–1615.
- I. Babuška and W. C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15 (1978), no. 4, 736–754. MR 483395, DOI 10.1137/0715049
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 520174
- Philippe G. Ciarlet, Introduction to numerical linear algebra and optimisation, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1989. With the assistance of Bernadette Miara and Jean-Marie Thomas; Translated from the French by A. Buttigieg. MR 1015713
- Ulrich Dierkes, Stefan Hildebrandt, Albrecht Küster, and Ortwin Wohlrab, Minimal surfaces. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 295, Springer-Verlag, Berlin, 1992. Boundary value problems. MR 1215267
- Willy Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal. 33 (1996), no. 3, 1106–1124. MR 1393904, DOI 10.1137/0733054
- W. Dörfler and M. Rumpf, An adaptive strategy for elliptic problems including a posteriori controlled boundary approximation, Math. Comp. 67 (1998), no. 224, 1361–1382. MR 1489969, DOI 10.1090/S0025-5718-98-00993-4
- Francesca Fierro, Numerical approximation for the mean curvature flow with nucleation using implicit time-stepping: an adaptive algorithm, Calcolo 35 (1998), no. 4, 205–224. MR 1740750, DOI 10.1007/s100920050017
- Mariano Giaquinta, On the Dirichlet problem for surfaces of prescribed mean curvature, Manuscripta Math. 12 (1974), 73–86. MR 336532, DOI 10.1007/BF01166235
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- W. Hackbusch, Elliptic differential equations, Springer Series in Computational Mathematics, vol. 18, Springer-Verlag, Berlin, 1992. Theory and numerical treatment; Translated from the author’s revision of the 1986 German original by Regine Fadiman and Patrick D. F. Ion. MR 1197118, DOI 10.1007/978-3-642-11490-8
- Pedro Morin, Ricardo H. Nochetto, and Kunibert G. Siebert, Local problems on stars: a posteriori error estimators, convergence, and performance, Math. Comp., posted on November 7, 2002, PII S0025-5718(02)-01463-1 (to appear in print).
- Pedro Morin, Ricardo H. Nochetto, and Kunibert G. Siebert, Data oscillation and convergence of adaptive FEM, SIAM J. Numer. Anal. 38 (2000), no. 2, 466–488. MR 1770058, DOI 10.1137/S0036142999360044
- J. Serrin, The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables, Philos. Trans. Roy. Soc. London Ser. A 264 (1969), 413–496. MR 282058, DOI 10.1098/rsta.1969.0033
- L. Ridgway Scott and Shangyou Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990), no. 190, 483–493. MR 1011446, DOI 10.1090/S0025-5718-1990-1011446-7
- R. Verfürth, A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations, Math. Comp. 62 (1994), no. 206, 445–475. MR 1213837, DOI 10.1090/S0025-5718-1994-1213837-1
- Rüdiger Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques, Advances in Numerical Mathematics, John Wiley, Chichester, 1996.
Bibliographic Information
- Francesca Fierro
- Affiliation: Dipartimento di Matematica, Università degli Studi di Milano, Via C. Saldini 50, 20133 Milano, Italy
- Email: fierro@mat.unimi.it
- Andreas Veeser
- Affiliation: Institut für Angewandte Mathematik, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 10, 79104 Freiburg i. Br., Germany
- Email: andy@mathematik.uni-freiburg.de
- Received by editor(s): September 19, 2001
- Received by editor(s) in revised form: March 27, 2002
- Published electronically: March 26, 2003
- Additional Notes: Research partially supported by the TMR network “Viscosity Solutions and Their Applications”, the CNR Contract CU99.01713.CT01, and Italian M.I.U.R. Cofin2000 Project “Calcolo Scientifico: Modelli e Metodi Numerici Innovativi”.
- © Copyright 2003 American Mathematical Society
- Journal: Math. Comp. 72 (2003), 1611-1634
- MSC (2000): Primary 65N30, 65N15; Secondary 35J25
- DOI: https://doi.org/10.1090/S0025-5718-03-01507-2
- MathSciNet review: 1986796