Irreducible trinomials over finite fields
HTML articles powered by AMS MathViewer
- by Joachim von zur Gathen;
- Math. Comp. 72 (2003), 1987-2000
- DOI: https://doi.org/10.1090/S0025-5718-03-01515-1
- Published electronically: February 3, 2003
- PDF | Request permission
Abstract:
A necessary condition for irreducibility of a trinomial over a finite field, based on classical results of Stickelberger and Swan, is established. It is applied in the special case $\mathbb {F}_{3}$, and some experimental discoveries are reported.References
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- M. Ben-Or (1981). Probabilistic algorithms in finite fields. In Proceedings of the 22nd Annual IEEE Symposium on Foundations of Computer Science, Nashville TN, 394–398.
- Elwyn R. Berlekamp, Algebraic coding theory, McGraw-Hill Book Co., New York-Toronto-London, 1968. MR 238597
- Anne Canteaut & Eric Filiol (2001). Ciphertext only reconstruction of stream ciphers based on combination generators. In Proceedings of Fast Software Encryption (FSE 2000), B. Schneier, editor, number 1978 in Lecture Notes in Computer Science. Springer-Verlag, New York. http://link.springer.de/link/service/series/0558/bibs/1978/19780165.htm
- Claude Carlet, Pascale Charpin, and Victor Zinoviev, Codes, bent functions and permutations suitable for DES-like cryptosystems, Des. Codes Cryptogr. 15 (1998), no. 2, 125–156. MR 1658423, DOI 10.1023/A:1008344232130
- L. Carlitz, Factorization of a special polynomial over a finite field, Pacific J. Math. 32 (1970), 603–614. MR 257038
- C. Cazacu and D. Simovici, A new approach of some problems concerning polynomials over finite fields, Information and Control 22 (1973), 503–511. MR 325578
- P. Charpin, A. Tietäväinen & Victor Zinoviev (1997). On binary cyclic codes with minimum distance $d=3$. Problems of Information Transmission 33(4), 287–296.
- Pascale Charpin, Aimo Tietäväinen, and Victor Zinoviev, On the minimum distances of non-binary cyclic codes, Des. Codes Cryptogr. 17 (1999), no. 1-3, 81–85. MR 1714371, DOI 10.1023/A:1008354504832
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- Kwangjo Kim and Tsutomu Matsumoto (eds.), Advances in cryptology—ASIACRYPT ’96, Lecture Notes in Computer Science, vol. 1163, Springer-Verlag, Berlin, 1996. MR 1486044, DOI 10.1007/BFb0034829
- L. E. Dickson (1906). Criteria for the irreducibility of functions in a finite field. Bulletin of the American Mathematical Society 13(1), 1–8.
- Dennis R. Estes and Tetsuro Kojima, Irreducible quadratic factors of $x^{(q^n+1)/2}+ax+b$ over $\textbf {F}_q$, Finite Fields Appl. 2 (1996), no. 2, 204–213. MR 1384160, DOI 10.1006/ffta.1996.0013
- H. Fredricksen and R. Wisniewski, On trinomials $x^{n}+x^{2}+1$ and $x^{8l\pm 3}+x^{k}+1$ irreducible over $\textrm {GF}(2)$, Inform. and Control 50 (1981), no. 1, 58–63. MR 665139, DOI 10.1016/S0019-9958(81)90144-3
- M. Gontcharoff, Sur quelques séries d’interpolation généralisant celles de Newton et de Stirling, Uchenye Zapiski Moskov. Gos. Univ. Matematika 30 (1939), 17–48 (Russian, with French summary). MR 2002
- Joachim von zur Gathen and Michael Nöcker, Exponentiation in finite fields: theory and practice, Applied algebra, algebraic algorithms and error-correcting codes (Toulouse, 1997) Lecture Notes in Comput. Sci., vol. 1255, Springer, Berlin, 1997, pp. 88–113. MR 1634108, DOI 10.1007/3-540-63163-1_{8}
- Joachim von zur Gathen & Michael Nöcker (2002). Exponentiation using addition chains for finite fields. In preparation.
- Richard M. Goldstein & Neal Zierler (1968). On Trinomial Recurrences. IEEE Transactions on Information Theory IT-14(1), 150–151.
- Solomon W. Golomb, Shift register sequences, Holden-Day, Inc., San Francisco, Calif.-Cambridge-Amsterdam, 1967. With portions co-authored by Lloyd R. Welch, Richard M. Goldstein, and Alfred W. Hales. MR 242575
- Solomon W. Golomb and Guang Gong, Periodic binary sequences with the “trinomial property”, IEEE Trans. Inform. Theory 45 (1999), no. 4, 1276–1279. MR 1686268, DOI 10.1109/18.761284
- Tor Helleseth, Chunming Rong, and Daniel Sandberg, New families of almost perfect nonlinear power mappings, IEEE Trans. Inform. Theory 45 (1999), no. 2, 474–485. MR 1677012, DOI 10.1109/18.748997
- IEEE (2000). IEEE Standard Specifications for Public-Key Cryptography. Technical Report IEEE Std 1363-2000, Institute of Electrical and Electronics Engineers, Inc., 3 Park Avenue, New York, NY 10016-5997, USA.
- Irving Kaplansky, Fields and rings, 2nd ed., Chicago Lectures in Mathematics, University of Chicago Press, Chicago, Ill.-London, 1972. MR 349646
- Pierre Loidreau (2000). On the Factorization of Trinomials over ${\mathbb F}_3$. Technical Report 3918, Institut national de recherche en informatique et en automatique (INRIA). http://www.inria.fr/RRRT/RR-3918.html.
- Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone, Handbook of applied cryptography, CRC Press Series on Discrete Mathematics and its Applications, CRC Press, Boca Raton, FL, 1997. With a foreword by Ronald L. Rivest. MR 1412797
- Akihiro Munemasa, Orthogonal arrays, primitive trinomials, and shift-register sequences, Finite Fields Appl. 4 (1998), no. 3, 252–260. MR 1640769, DOI 10.1006/ffta.1998.0213
- Oystein Ore (1934). Contributions to the theory of finite fields. Transactions of the American Mathematical Society 36, 243–274.
- A.-E. Pellet (1878). Sur la décomposition d’une fonction entière en facteurs irréductibles suivant un module premier $p$. Comptes Rendus de l’Académie des Sciences Paris 86, 1071–1072.
- Richard Kershner, The number of circles covering a set, Amer. J. Math. 61 (1939), 665–671. MR 43, DOI 10.2307/2371320
- Richard Schroeppel, Hilarie Orman, Sean O’Malley, and Oliver Spatscheck, Fast key exchange with elliptic curve systems, Advances in cryptology—CRYPTO ’95 (Santa Barbara, CA, 1995) Lecture Notes in Comput. Sci., vol. 963, Springer, Berlin, 1995, pp. 43–56. MR 1445566, DOI 10.1007/3-540-44750-4_{4}
- Steve Seiden (2001). Can a Computer Proof be Elegant? SIGACT News 60(1), 111–114.
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- L. Stickelberger (1897). Über eine neue Eigenschaft der Diskriminanten algebraischer Zahlkörper. Verhandlungen des ersten Internationalen Mathematiker-Kongresses, Zürich, 182–193.
- Richard G. Swan, Factorization of polynomials over finite fields, Pacific J. Math. 12 (1962), 1099–1106. MR 144891
- Uzi Vishne, Factorization of trinomials over Galois fields of characteristic $2$, Finite Fields Appl. 3 (1997), no. 4, 370–377. MR 1478835, DOI 10.1006/ffta.1997.0191
- Neal Zierler, On $x^{n}+x+1$ over $\textrm {GF}(2)$, Information and Control 16 (1970), 502–505. MR 271072
- Neal Zierler and John Brillhart, On primitive trinomials $(\textrm {mod}\ 2)$. II, Information and Control 14 (1969), 566–569. MR 244204
Bibliographic Information
- Joachim von zur Gathen
- Affiliation: Fakultät für Elektrotechnik, Informatik, Mathematik, Universität Paderborn, D-33095 Paderborn, Germany
- MR Author ID: 71800
- Email: gathen@upb.de
- Received by editor(s): March 29, 2001
- Received by editor(s) in revised form: April 17, 2002
- Published electronically: February 3, 2003
- © Copyright 2003 American Mathematical Society
- Journal: Math. Comp. 72 (2003), 1987-2000
- MSC (2000): Primary 11T06; Secondary 12Y05, 68W30
- DOI: https://doi.org/10.1090/S0025-5718-03-01515-1
- MathSciNet review: 1986817