On the total number of prime factors of an odd perfect number
HTML articles powered by AMS MathViewer
- by D. E. Iannucci and R. M. Sorli;
- Math. Comp. 72 (2003), 2077-2084
- DOI: https://doi.org/10.1090/S0025-5718-03-01522-9
- Published electronically: May 8, 2003
- PDF | Request permission
Abstract:
We say $n\in {\mathbb N}$ is perfect if $\sigma (n)=2n$, where $\sigma (n)$ denotes the sum of the positive divisors of $n$. No odd perfect numbers are known, but it is well known that if such a number exists, it must have prime factorization of the form $n=p^{\alpha }\prod _{j=1}^{k}q_j^{2\beta _j}$, where $p$, $q_1$, …, $q_k$ are distinct primes and $p\equiv \alpha \equiv 1\pmod 4$. We prove that if $\beta _j\equiv 1\pmod 3$ or $\beta _j\equiv 2\pmod 5$ for all $j$, $1\le j\le k$, then $3\nmid n$. We also prove as our main result that $\Omega (n)\ge 37$, where $\Omega (n)=\alpha +2\sum _{j=1}^{k}\beta _j$. This improves a result of Sayers $( \Omega (n)\ge 29 )$ given in 1986.References
- Garrett Birkhoff and Morgan Ward, A characterization of Boolean algebras, Ann. of Math. (2) 40 (1939), 609–610. MR 9, DOI 10.2307/1968945
- E. Z. Chein, Ph.D. Thesis, Pennsylvania State University (1979).
- G. L. Cohen, On the total number of prime factors of an odd perfect number Appendix A.3, Ph.D. Thesis, University of New South Wales (1982).
- Graeme L. Cohen, On the largest component of an odd perfect number, J. Austral. Math. Soc. Ser. A 42 (1987), no. 2, 280–286. MR 869751
- G. L. Cohen and R. J. Williams, Extensions of some results concerning odd perfect numbers, Fibonacci Quart. 23 (1985), no. 1, 70–76. MR 786364
- Peter Hagis Jr., Outline of a proof that every odd perfect number has at least eight prime factors, Math. Comp. 35 (1980), no. 151, 1027–1032. MR 572873, DOI 10.1090/S0025-5718-1980-0572873-9
- Peter Hagis Jr., Sketch of a proof that an odd perfect number relatively prime to $3$ has at least eleven prime factors, Math. Comp. 40 (1983), no. 161, 399–404. MR 679455, DOI 10.1090/S0025-5718-1983-0679455-1
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- Masao Kishore, Odd perfect numbers not divisible by $3$. II, Math. Comp. 40 (1983), no. 161, 405–411. MR 679456, DOI 10.1090/S0025-5718-1983-0679456-3
- Wayne L. McDaniel, The non-existence of odd perfect numbers of a certain form, Arch. Math. (Basel) 21 (1970), 52–53. MR 258723, DOI 10.1007/BF01220877
- Wayne L. McDaniel, On the divisibility of an odd perfect number by the sixth power of a prime, Math. Comp. 25 (1971), 383–385. MR 296013, DOI 10.1090/S0025-5718-1971-0296013-3
- M. Sayers, M.App.Sc. Thesis, New South Wales Institute of Technology (1986).
- R. Steuerwald, Verschärfung einer notwendigen Bedingung für die Existenz einer ungeraden vollkommenen Zahl S.-B. Math.-Nat. Abt. Bayer. Akad. Wiss. (1937), 68–73.
Bibliographic Information
- D. E. Iannucci
- Affiliation: University of the Virgin Islands, St. Thomas, Virgin Islands 00802
- Email: diannuc@uvi.edu
- R. M. Sorli
- Affiliation: Department of Mathematical Sciences, University of Technology, Sydney, Broadway, 2007, Australia
- Email: rons@maths.uts.edu.au
- Received by editor(s): November 7, 2001
- Published electronically: May 8, 2003
- Additional Notes: The authors are grateful for the advice and assistance given by Graeme Cohen
- © Copyright 2003 American Mathematical Society
- Journal: Math. Comp. 72 (2003), 2077-2084
- MSC (2000): Primary 11A25, 11Y70
- DOI: https://doi.org/10.1090/S0025-5718-03-01522-9
- MathSciNet review: 1986824