## Coding the principal character formula for affine Kac-Moody lie algebras

HTML articles powered by AMS MathViewer

- by M. K. Bos;
- Math. Comp.
**72**(2003), 2001-2012 - DOI: https://doi.org/10.1090/S0025-5718-03-01577-1
- Published electronically: May 23, 2003
- PDF | Request permission

## Abstract:

In this paper, an algorithm for computing the principal character for affine Lie algebras is discussed and presented. The principal characters discovered using this program are given and/or proven. Results include level 2 and 3 character formulas in $A_{2n-1}^{(2)}$ and the sole existence of the Rogers-Ramanujan products in $A_1^{(1)}$, $A_2^{(1)}$, $A_2^{(2)}$, $C_3^{(1)}$, $F_4^{(1)}$, $G_2^{(1)}$, $A_7^{(2)}$.## References

- George E. Andrews,
*The theory of partitions*, Encyclopedia of Mathematics and its Applications, Vol. 2, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. MR**557013** - M. K. Bos and K. C. Misra,
*Level two representations of $A^{(2)}_7$ and Rogers-Ramanujan identities*, Comm. Algebra**22**(1994), no. 10, 3965–3983. MR**1280102**, DOI 10.1080/00927879408825059 - Stefano Capparelli,
*On some representations of twisted affine Lie algebras and combinatorial identities*, J. Algebra**154**(1993), no. 2, 335–355. MR**1206124**, DOI 10.1006/jabr.1993.1017 - Victor G. Kac,
*Infinite-dimensional Lie algebras*, 3rd ed., Cambridge University Press, Cambridge, 1990. MR**1104219**, DOI 10.1017/CBO9780511626234 - James Lepowsky and Robert Lee Wilson,
*Construction of the affine Lie algebra $A_{1}^{{}}(1)$*, Comm. Math. Phys.**62**(1978), no. 1, 43–53. MR**573075** - James Lepowsky and Robert Lee Wilson,
*A Lie theoretic interpretation and proof of the Rogers-Ramanujan identities*, Adv. in Math.**45**(1982), no. 1, 21–72. MR**663415**, DOI 10.1016/S0001-8708(82)80012-1 - James Lepowsky and Robert Lee Wilson,
*The structure of standard modules. I. Universal algebras and the Rogers-Ramanujan identities*, Invent. Math.**77**(1984), no. 2, 199–290. MR**752821**, DOI 10.1007/BF01388447 - Marly Mandia,
*Structure of the level one standard modules for the affine Lie algebras $B_l^{(1)},\;F^{(1)}_4$ and $G^{(1)}_2$*, Mem. Amer. Math. Soc.**65**(1987), no. 362, x+146. MR**874087**, DOI 10.1090/memo/0362 - A. Meurman and M. Primc,
*Annihilating ideals of standard modules of $\textrm {sl}(2,\textbf {C})^\sim$ and combinatorial identities*, Adv. in Math.**64**(1987), no. 3, 177–240. MR**888628**, DOI 10.1016/0001-8708(87)90008-9 - Kailash C. Misra,
*Specialized characters for affine Lie algebras and the Rogers-Ramanujan identities*, Ramanujan revisited (Urbana-Champaign, Ill., 1987) Academic Press, Boston, MA, 1988, pp. 85–109. MR**938962** - Kailash C. Misra,
*Structure of certain standard modules for $A^{(1)}_{n}$ and the Rogers-Ramanujan identities*, J. Algebra**88**(1984), no. 1, 196–227. MR**741940**, DOI 10.1016/0021-8693(84)90098-X - Kailash C. Misra,
*Structure of some standard modules for $C^{(1)}_{n}$*, J. Algebra**90**(1984), no. 2, 385–409. MR**760018**, DOI 10.1016/0021-8693(84)90179-0 - J. Stembridge, SF, posets, coxeter, and weyl, http://www.math.lsa.umich.edu/ jrs/maple. html#coxeter. Accessed last on 19 July 1999.
- Chuan Fu Xie,
*Structure of the level two standard modules for the affine Lie algebra $A_2^{(2)}$*, Comm. Algebra**18**(1990), no. 8, 2397–2401. MR**1074234**, DOI 10.1080/00927879008824029

## Bibliographic Information

**M. K. Bos**- Affiliation: Department of Mathematics, St. Lawrence University, Canton, New York 13617
- Email: mbos@stlawu.edu
- Received by editor(s): October 3, 1999
- Received by editor(s) in revised form: March 27, 2002
- Published electronically: May 23, 2003
- © Copyright 2003 American Mathematical Society
- Journal: Math. Comp.
**72**(2003), 2001-2012 - MSC (2000): Primary 17B67, 17B10
- DOI: https://doi.org/10.1090/S0025-5718-03-01577-1
- MathSciNet review: 1986818