Coding the principal character formula for affine Kac-Moody lie algebras
HTML articles powered by AMS MathViewer
- by M. K. Bos;
- Math. Comp. 72 (2003), 2001-2012
- DOI: https://doi.org/10.1090/S0025-5718-03-01577-1
- Published electronically: May 23, 2003
- PDF | Request permission
Abstract:
In this paper, an algorithm for computing the principal character for affine Lie algebras is discussed and presented. The principal characters discovered using this program are given and/or proven. Results include level 2 and 3 character formulas in $A_{2n-1}^{(2)}$ and the sole existence of the Rogers-Ramanujan products in $A_1^{(1)}$, $A_2^{(1)}$, $A_2^{(2)}$, $C_3^{(1)}$, $F_4^{(1)}$, $G_2^{(1)}$, $A_7^{(2)}$.References
- George E. Andrews, The theory of partitions, Encyclopedia of Mathematics and its Applications, Vol. 2, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. MR 557013
- M. K. Bos and K. C. Misra, Level two representations of $A^{(2)}_7$ and Rogers-Ramanujan identities, Comm. Algebra 22 (1994), no. 10, 3965–3983. MR 1280102, DOI 10.1080/00927879408825059
- Stefano Capparelli, On some representations of twisted affine Lie algebras and combinatorial identities, J. Algebra 154 (1993), no. 2, 335–355. MR 1206124, DOI 10.1006/jabr.1993.1017
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219, DOI 10.1017/CBO9780511626234
- James Lepowsky and Robert Lee Wilson, Construction of the affine Lie algebra $A_{1}^{{}}(1)$, Comm. Math. Phys. 62 (1978), no. 1, 43–53. MR 573075
- James Lepowsky and Robert Lee Wilson, A Lie theoretic interpretation and proof of the Rogers-Ramanujan identities, Adv. in Math. 45 (1982), no. 1, 21–72. MR 663415, DOI 10.1016/S0001-8708(82)80012-1
- James Lepowsky and Robert Lee Wilson, The structure of standard modules. I. Universal algebras and the Rogers-Ramanujan identities, Invent. Math. 77 (1984), no. 2, 199–290. MR 752821, DOI 10.1007/BF01388447
- Marly Mandia, Structure of the level one standard modules for the affine Lie algebras $B_l^{(1)},\;F^{(1)}_4$ and $G^{(1)}_2$, Mem. Amer. Math. Soc. 65 (1987), no. 362, x+146. MR 874087, DOI 10.1090/memo/0362
- A. Meurman and M. Primc, Annihilating ideals of standard modules of $\textrm {sl}(2,\textbf {C})^\sim$ and combinatorial identities, Adv. in Math. 64 (1987), no. 3, 177–240. MR 888628, DOI 10.1016/0001-8708(87)90008-9
- Kailash C. Misra, Specialized characters for affine Lie algebras and the Rogers-Ramanujan identities, Ramanujan revisited (Urbana-Champaign, Ill., 1987) Academic Press, Boston, MA, 1988, pp. 85–109. MR 938962
- Kailash C. Misra, Structure of certain standard modules for $A^{(1)}_{n}$ and the Rogers-Ramanujan identities, J. Algebra 88 (1984), no. 1, 196–227. MR 741940, DOI 10.1016/0021-8693(84)90098-X
- Kailash C. Misra, Structure of some standard modules for $C^{(1)}_{n}$, J. Algebra 90 (1984), no. 2, 385–409. MR 760018, DOI 10.1016/0021-8693(84)90179-0
- J. Stembridge, SF, posets, coxeter, and weyl, http://www.math.lsa.umich.edu/ jrs/maple. html#coxeter. Accessed last on 19 July 1999.
- Chuan Fu Xie, Structure of the level two standard modules for the affine Lie algebra $A_2^{(2)}$, Comm. Algebra 18 (1990), no. 8, 2397–2401. MR 1074234, DOI 10.1080/00927879008824029
Bibliographic Information
- M. K. Bos
- Affiliation: Department of Mathematics, St. Lawrence University, Canton, New York 13617
- Email: mbos@stlawu.edu
- Received by editor(s): October 3, 1999
- Received by editor(s) in revised form: March 27, 2002
- Published electronically: May 23, 2003
- © Copyright 2003 American Mathematical Society
- Journal: Math. Comp. 72 (2003), 2001-2012
- MSC (2000): Primary 17B67, 17B10
- DOI: https://doi.org/10.1090/S0025-5718-03-01577-1
- MathSciNet review: 1986818