An efficient algorithm for the computation of Galois automorphisms
Author:
Bill Allombert
Journal:
Math. Comp. 73 (2004), 359-375
MSC (2000):
Primary 11Y40
DOI:
https://doi.org/10.1090/S0025-5718-03-01476-5
Published electronically:
July 17, 2003
MathSciNet review:
2034127
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We describe an algorithm for computing the Galois automorphisms of a Galois extension which generalizes the algorithm of Acciaro and Klüners to the non-Abelian case. This is much faster in practice than algorithms based on LLL or factorization.
- John Abbott, Victor Shoup and Paul Zimmerman, Factorization in $\mathbb {Z}[x]$: The Searching Phase (Carlo Traverso, ed.), Proc. ISSAC 2000, ACM Press, 2000, pp. 1–7. http://www.shoup.net/papers/asz.ps.Z.
- Vincenzo Acciaro and Jürgen Klüners, Computing automorphisms of abelian number fields, Math. Comp. 68 (1999), no. 227, 1179–1186. MR 1648426, DOI https://doi.org/10.1090/S0025-5718-99-01084-4
- List of polynomials of the benchmark, http://www.math.u-bordeaux.fr/~allomber/nfgaloisconj_{b}enchmark.html
- Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 1228206
- Marshall Hall Jr., The theory of groups, The Macmillan Co., New York, N.Y., 1959. MR 0103215
- Jürgen Klüners, Über die Berechnung von Automorphismen und Teilkörpern algebraischer Zahlkörper, Thesis, Technischen Universitat Berlin, 1997.
- Jürgen Klüners, On computing subfields. A detailed description of the algorithm, J. Théor. Nombres Bordeaux 10 (1998), no. 2, 243–271 (English, with English and French summaries). MR 1828244
- Jürgen Klüners and Gunter Malle, Explicit Galois realization of transitive groups of degree up to 15, J. Symbolic Comput. 30 (2000), no. 6, 675–716. Algorithmic methods in Galois theory. MR 1800033, DOI https://doi.org/10.1006/jsco.2000.0378
- M. Daberkow, C. Fieker, J. Klüners, M. Pohst, K. Roegner, M. Schörnig, and K. Wildanger, KANT V4, J. Symbolic Comput. 24 (1997), no. 3-4, 267–283. Computational algebra and number theory (London, 1993). MR 1484479, DOI https://doi.org/10.1006/jsco.1996.0126
- W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user language, J. Symb. Comput., 24, 1997, 235–265.
- PARI, C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier, User’s Guide to PARI-GP, version 2.2.1.
- Xavier Roblot, Algorithmes de factorisation dans les extensions relatives et applications de la conjecture de Stark à la construction de corps de classes de rayon, Thesis, Université Bordeaux I, 1997.
Retrieve articles in Mathematics of Computation with MSC (2000): 11Y40
Retrieve articles in all journals with MSC (2000): 11Y40
Additional Information
Bill Allombert
Affiliation:
Université Bordeaux I, Laboratoire A2X, 351 cours de la Libération, 33 405 Talence, France
Email:
allomber@math.u-bordeaux.fr
Received by editor(s):
March 24, 2000
Published electronically:
July 17, 2003
Article copyright:
© Copyright 2003
American Mathematical Society