Numerical solution of the elastic body-plate problem by nonoverlapping domain decomposition type techniques
HTML articles powered by AMS MathViewer
- by Jianguo Huang;
- Math. Comp. 73 (2004), 19-34
- DOI: https://doi.org/10.1090/S0025-5718-03-01532-1
- Published electronically: May 7, 2003
- PDF | Request permission
Abstract:
The purpose of this paper is to provide two numerical methods for solving the elastic body-plate problem by nonoverlapping domain decomposition type techniques, based on the discretization method by Wang. The first one is similar to an older method, but here the corresponding Schur complement matrix is preconditioned by a specific preconditioner associated with the plate problem. The second one is a “displacement-force” type Schwarz alternating method. At each iteration step of the two methods, either a pure body or a pure plate problem needs to be solved. It is shown that both methods have a convergence rate independent of the size of the finite element mesh.References
- Ivo Babuška and A. K. Aziz, Survey lectures on the mathematical foundations of the finite element method, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York-London, 1972, pp. 1–359. With the collaboration of G. Fix and R. B. Kellogg. MR 421106
- Michel Bernadou, Séverine Fayolle, and Françoise Léné, Numerical analysis of junctions between plates, Comput. Methods Appl. Mech. Engrg. 74 (1989), no. 3, 307–326. MR 1020628, DOI 10.1016/0045-7825(89)90054-6
- Petter E. Bjørstad and Olof B. Widlund, Iterative methods for the solution of elliptic problems on regions partitioned into substructures, SIAM J. Numer. Anal. 23 (1986), no. 6, 1097–1120. MR 865945, DOI 10.1137/0723075
- H. Blum and R. Rannacher, On the boundary value problem of the biharmonic operator on domains with angular corners, Math. Methods Appl. Sci. 2 (1980), no. 4, 556–581. MR 595625, DOI 10.1002/mma.1670020416
- J. H. Bramble, J. E. Pasciak, and A. H. Schatz, An iterative method for elliptic problems on regions partitioned into substructures, Math. Comp. 46 (1986), no. 174, 361–369. MR 829613, DOI 10.1090/S0025-5718-1986-0829613-0
- J. H. Bramble, J. E. Pasciak, and A. H. Schatz, The construction of preconditioners for elliptic problems by substructuring. I, Math. Comp. 47 (1986), no. 175, 103–134. MR 842125, DOI 10.1090/S0025-5718-1986-0842125-3
- Susanne C. Brenner, Two-level additive Schwarz preconditioners for nonconforming finite elements, Domain decomposition methods in scientific and engineering computing (University Park, PA, 1993) Contemp. Math., vol. 180, Amer. Math. Soc., Providence, RI, 1994, pp. 9–14. MR 1312372, DOI 10.1090/conm/180/01951
- Susanne C. Brenner, Two-level additive Schwarz preconditioners for nonconforming finite element methods, Math. Comp. 65 (1996), no. 215, 897–921. MR 1348039, DOI 10.1090/S0025-5718-96-00746-6
- Susanne C. Brenner, A two-level additive Schwarz preconditioner for nonconforming plate elements, Numer. Math. 72 (1996), no. 4, 419–447. MR 1376107, DOI 10.1007/s002110050176
- Tony F. Chan and Tarek P. Mathew, Domain decomposition algorithms, Acta numerica, 1994, Acta Numer., Cambridge Univ. Press, Cambridge, 1994, pp. 61–143. MR 1288096, DOI 10.1017/S0962492900002427
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 520174
- A. V. Chigarev, An averaging method in dynamic problems in the theory of elasticity of structurally heterogeneous media, Prikl. Mat. Mekh. 54 (1990), no. 2, 258–266 (Russian); English transl., J. Appl. Math. Mech. 54 (1990), no. 2, 211–218 (1991). MR 1065766, DOI 10.1016/0021-8928(90)90036-A
- Maksymilian Dryja and Olof B. Widlund, Towards a unified theory of domain decomposition algorithms for elliptic problems, Third International Symposium on Domain Decomposition Methods for Partial Differential Equations (Houston, TX, 1989) SIAM, Philadelphia, PA, 1990, pp. 3–21. MR 1064335
- Kang Feng, Elliptic equations of composite manifold and composite elastic structures, Math. Numer. Sinica 1 (1979), no. 3, 199–208 (Chinese, with English summary). MR 657535
- Rudolph E. Langer, The boundary problem of an ordinary linear differential system in the complex domain, Trans. Amer. Math. Soc. 46 (1939), 151–190 and Correction, 467 (1939). MR 84, DOI 10.1090/S0002-9947-1939-0000084-7
- Gene H. Golub and Charles F. Van Loan, Matrix computations, 2nd ed., Johns Hopkins Series in the Mathematical Sciences, vol. 3, Johns Hopkins University Press, Baltimore, MD, 1989. MR 1002570
- P. Grisvard, Singularities in boundary value problems, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], vol. 22, Masson, Paris; Springer-Verlag, Berlin, 1992. MR 1173209
- Frédéric d’Hennezel, Domain decomposition method and elastic multi-structures: the stiffened plate problem, Numer. Math. 66 (1993), no. 2, 181–197. MR 1245010, DOI 10.1007/BF01385693
- L. D. Marini and A. Quarteroni, A relaxation procedure for domain decomposition methods using finite elements, Numer. Math. 55 (1989), no. 5, 575–598. MR 998911, DOI 10.1007/BF01398917
- Jindřich Nečas, Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Éditeurs, Paris; Academia, Éditeurs, Prague, 1967 (French). MR 227584
- A. Quarteroni, G. Sacchi Landriani, and A. Valli, Coupling of viscous and inviscid Stokes equations via a domain decomposition method for finite elements, Numer. Math. 59 (1991), no. 8, 831–859. MR 1128036, DOI 10.1007/BF01385813
- Friedrich Stummel, The generalized patch test, SIAM J. Numer. Anal. 16 (1979), no. 3, 449–471. MR 530481, DOI 10.1137/0716037
- Friedrich Stummel, Basic compactness properties of nonconforming and hybrid finite element spaces, RAIRO Anal. Numér. 14 (1980), no. 1, 81–115 (English, with French summary). MR 566091
- L. Wang, The mathematical models of some composite elastic structures and their finite element approximations (in Chinese), Numer. Math. Sinica, 14(1992), pp. 358-370.
- Lie Heng Wang, An analysis of the TRUNC element for coupled plates with rigid junction, Comput. Methods Appl. Mech. Engrg. 121 (1995), no. 1-4, 1–14. MR 1323007, DOI 10.1016/0045-7825(94)00711-U
- J. Xu, Theory of multilevel methods, Ph. D. thesis, Cornell University, 1989.
- Jinchao Xu and Jun Zou, Some nonoverlapping domain decomposition methods, SIAM Rev. 40 (1998), no. 4, 857–914. MR 1659681, DOI 10.1137/S0036144596306800
Bibliographic Information
- Jianguo Huang
- Affiliation: Department of Mathematics, Shanghai Jiao Tong University, Shanghai, 200240, Peoples Republic of China
- Email: jghuang@online.sh.cn
- Received by editor(s): December 1, 1997
- Received by editor(s) in revised form: May 26, 2002
- Published electronically: May 7, 2003
- Additional Notes: The work was partially supported by the National Natural Science Foundation of China under grant no. 19901018
- © Copyright 2003 American Mathematical Society
- Journal: Math. Comp. 73 (2004), 19-34
- MSC (2000): Primary 65N30, 65N22, 65F10, 74S05
- DOI: https://doi.org/10.1090/S0025-5718-03-01532-1
- MathSciNet review: 2034109