Laguerre approximation of stable manifolds with application to connecting orbits
HTML articles powered by AMS MathViewer
- by Gerald Moore;
- Math. Comp. 73 (2004), 211-242
- DOI: https://doi.org/10.1090/S0025-5718-03-01535-7
- Published electronically: April 22, 2003
- PDF | Request permission
Abstract:
We present an algorithm, based on approximation by Laguerre polynomials, for computing a point on the stable manifold of a stationary solution of an autonomous system. A superconvergence phenomenon means that the accuracy of our results is much higher than the usual spectral accuracy. Both the theory and the implementation of the method are considered. Finally, as an application of the algorithm, we describe a fully spectral approximation of homo- and heteroclinic orbits.References
- Herbert Amann, Ordinary differential equations, De Gruyter Studies in Mathematics, vol. 13, Walter de Gruyter & Co., Berlin, 1990. An introduction to nonlinear analysis; Translated from the German by Gerhard Metzen. MR 1071170, DOI 10.1515/9783110853698
- Z. Bashir-Ali, J.R. Cash and G. Moore, Numerical experiments with algorithms for connecting orbits, in preparation.
- W.-J. Beyn, The numerical computation of connecting orbits in dynamical systems, IMA J. Numer. Anal. 10 (1990), no. 3, 379–405. MR 1068199, DOI 10.1093/imanum/10.3.379
- Will Light (ed.), Advances in numerical analysis. Vol. I, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1991. Nonlinear partial differential equations and dynamical systems. MR 1138469
- Claudio Canuto, M. Yousuff Hussaini, Alfio Quarteroni, and Thomas A. Zang, Spectral methods in fluid dynamics, Springer Series in Computational Physics, Springer-Verlag, New York, 1988. MR 917480, DOI 10.1007/978-3-642-84108-8
- A. R. Champneys, Yu. A. Kuznetsov, and B. Sandstede, A numerical toolbox for homoclinic bifurcation analysis, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 6 (1996), no. 5, 867–887. MR 1404122, DOI 10.1142/S0218127496000485
- Philip J. Davis and Philip Rabinowitz, Methods of numerical integration, Computer Science and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 448814
- E.J. Doedel, A.R. Champneys, T.F. Fairgrieve, Y.A. Kuznetsov, B. Sandstede & X.J. Wang, AUTO 97: Continuation And Bifurcation Software for Ordinary Differential Equations (with HomCont), Technical Report, California Institute Of Technology, 1998.
- Uri Elias, Oscillation theory of two-term differential equations, Mathematics and its Applications, vol. 396, Kluwer Academic Publishers Group, Dordrecht, 1997. MR 1445292, DOI 10.1007/978-94-017-2517-0
- Daniele Funaro, Computational aspects of pseudospectral Laguerre approximations, Appl. Numer. Math. 6 (1990), no. 6, 447–457. MR 1087134, DOI 10.1016/0168-9274(90)90003-X
- Walter Gautschi, Orthogonal polynomials: applications and computation, Acta numerica, 1996, Acta Numer., vol. 5, Cambridge Univ. Press, Cambridge, 1996, pp. 45–119. MR 1624591, DOI 10.1017/S0962492900002622
- Gene H. Golub and Charles F. Van Loan, Matrix computations, 2nd ed., Johns Hopkins Series in the Mathematical Sciences, vol. 3, Johns Hopkins University Press, Baltimore, MD, 1989. MR 1002570
- Gene H. Golub and John H. Welsch, Calculation of Gauss quadrature rules, Math. Comp. 23 (1969), 221–230; addendum, ibid. 23 (1969), no. 106, loose microfiche suppl. A1–A10. MR 245201, DOI 10.1090/S0025-5718-69-99647-1
- John Guckenheimer and Philip Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Applied Mathematical Sciences, vol. 42, Springer-Verlag, New York, 1983. MR 709768, DOI 10.1007/978-1-4612-1140-2
- Morris W. Hirsch and Stephen Smale, Differential equations, dynamical systems, and linear algebra, Pure and Applied Mathematics, Vol. 60, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 486784
- Yingjie Liu, Lixin Liu, and T. Tang, The numerical computation of connecting orbits in dynamical systems: a rational spectral approach, J. Comput. Phys. 111 (1994), no. 2, 373–380. MR 1275028, DOI 10.1006/jcph.1994.1070
- Y. Maday, B. Pernaud-Thomas, and H. Vandeven, Reappraisal of Laguerre type spectral methods, Rech. Aérospat. 6 (1985), 353–375 (French, with English summary); English transl., Rech. Aérospat. (English Edition) 6 (1985), 13–35. MR 850680
- Cathy Mavriplis, Laguerre polynomials for infinite-domain spectral elements, J. Comput. Phys. 80 (1989), no. 2, 480–488. MR 1008399, DOI 10.1016/0021-9991(89)90112-5
- Gerald Moore, Computation and parametrization of periodic and connecting orbits, IMA J. Numer. Anal. 15 (1995), no. 2, 245–263. MR 1323740, DOI 10.1093/imanum/15.2.245
- Gerald Moore, Geometric methods for computing invariant manifolds, Appl. Numer. Math. 17 (1995), no. 3, 319–331. Numerical methods for ordinary differential equations (Atlanta, GA, 1994). MR 1355567, DOI 10.1016/0168-9274(95)00037-U
- Gerald Moore and Evelyne Hubert, Algorithms for constructing stable manifolds of stationary solutions, IMA J. Numer. Anal. 19 (1999), no. 3, 375–424. MR 1695645, DOI 10.1093/imanum/19.3.375
- Philip Rabinowitz and George Weiss, Tables of abcissas and weights for numerical evaluation of integrals of the form $\int _{0}^{\infty }\,e^{-x}x^{n}f(x)\,dx$, Math. Tables Aids Comput. 13 (1959), 285–294. MR 107992, DOI 10.1090/S0025-5718-1959-0107992-3
- David Ruelle, Elements of differentiable dynamics and bifurcation theory, Academic Press, Inc., Boston, MA, 1989. MR 982930
- Michael Shub, Global stability of dynamical systems, Springer-Verlag, New York, 1987. With the collaboration of Albert Fathi and Rémi Langevin; Translated from the French by Joseph Christy. MR 869255, DOI 10.1007/978-1-4757-1947-5
Bibliographic Information
- Gerald Moore
- Affiliation: Department of Mathematics, Imperial College, Queen’s Gate, London SW7 2BZ England
- Email: g.moore@ic.ac.uk
- Received by editor(s): February 20, 2001
- Received by editor(s) in revised form: May 13, 2002
- Published electronically: April 22, 2003
- © Copyright 2003 American Mathematical Society
- Journal: Math. Comp. 73 (2004), 211-242
- MSC (2000): Primary 33C45, 37C29, 37M99, 65N35, 65P40
- DOI: https://doi.org/10.1090/S0025-5718-03-01535-7
- MathSciNet review: 2034118