The Brumer-Stark conjecture in some families of extensions of specified degree
HTML articles powered by AMS MathViewer
- by Cornelius Greither, Xavier-François Roblot and Brett A. Tangedal;
- Math. Comp. 73 (2004), 297-315
- DOI: https://doi.org/10.1090/S0025-5718-03-01565-5
- Published electronically: June 19, 2003
- PDF | Request permission
Corrigendum: Math. Comp. 84 (2015), 955-957.
Abstract:
As a starting point, an important link is established between Brumer’s conjecture and the Brumer-Stark conjecture which allows one to translate recent progress on the former into new results on the latter. For example, if $K/F$ is an abelian extension of relative degree $2p$, $p$ an odd prime, we prove the $l$-part of the Brumer-Stark conjecture for all odd primes $l\ne p$ with $F$ belonging to a wide class of base fields. In the same setting, we study the $2$-part and $p$-part of Brumer-Stark with no special restriction on $F$ and are left with only two well-defined specific classes of extensions that elude proof. Extensive computations were carried out within these two classes and a complete numerical proof of the Brumer-Stark conjecture was obtained in all cases.References
- Daniel Barsky, Fonctions zeta $p$-adiques d’une classe de rayon des corps de nombres totalement réels, Groupe d’Étude d’Analyse Ultramétrique (5e année: 1977/78), Secrétariat Math., Paris, 1978, pp. Exp. No. 16, 23 (French). MR 525346
- Pierrette Cassou-Noguès, $p$-adic $L$-functions for totally real number field, Proceedings of the Conference on $p$-adic Analysis (Nijmegen, 1978) Katholieke Univ., Nijmegen, 1978, pp. 24–37. MR 522119
- Henri Cohen, Advanced topics in computational number theory, Graduate Texts in Mathematics, vol. 193, Springer-Verlag, New York, 2000. MR 1728313, DOI 10.1007/978-1-4419-8489-0
- Pierre Deligne and Kenneth A. Ribet, Values of abelian $L$-functions at negative integers over totally real fields, Invent. Math. 59 (1980), no. 3, 227–286. MR 579702, DOI 10.1007/BF01453237
- A. Fröhlich and M. J. Taylor, Algebraic number theory, Cambridge Studies in Advanced Mathematics, vol. 27, Cambridge University Press, Cambridge, 1993. MR 1215934
- Cornelius Greither, Some cases of Brumer’s conjecture for abelian CM extensions of totally real fields, Math. Z. 233 (2000), no. 3, 515–534. MR 1750935, DOI 10.1007/s002090050485
- Cornelius Greither, An equivariant version of an index formula of Fröhlich and McCulloh, J. Number Theory 69 (1998), no. 1, 1–15. MR 1611085, DOI 10.1006/jnth.1997.2209
- David R. Hayes, Base change for the conjecture of Brumer-Stark, J. Reine Angew. Math. 497 (1998), 83–89. MR 1617427, DOI 10.1515/crll.1998.044
- Gerald J. Janusz, Algebraic number fields, 2nd ed., Graduate Studies in Mathematics, vol. 7, American Mathematical Society, Providence, RI, 1996. MR 1362545, DOI 10.1090/gsm/007
- Helmut Klingen, Über die Werte der Dedekindschen Zetafunktion, Math. Ann. 145 (1961/62), 265–272 (German). MR 133304, DOI 10.1007/BF01451369
- Serge Lang, Cyclotomic fields I and II, 2nd ed., Graduate Texts in Mathematics, vol. 121, Springer-Verlag, New York, 1990. With an appendix by Karl Rubin. MR 1029028, DOI 10.1007/978-1-4612-0987-4
- C. Batut, K. Belabas, D. Bernardi, H. Cohen, M. Olivier, The Computer Number Theory System PARI/GP, http://www.parigp-home.de/
- Xavier-François Roblot, Stark’s conjectures and Hilbert’s twelfth problem, Experiment. Math. 9 (2000), no. 2, 251–260. MR 1780210
- Xavier-François Roblot and Brett A. Tangedal, Numerical verification of the Brumer-Stark conjecture, Algorithmic number theory (Leiden, 2000) Lecture Notes in Comput. Sci., vol. 1838, Springer, Berlin, 2000, pp. 491–503. MR 1850628, DOI 10.1007/10722028_{3}2
- J. W. Sands, Galois groups of exponent two and the Brumer-Stark conjecture, J. Reine Angew. Math. 349 (1984), 129–135. MR 743968, DOI 10.1515/crll.1984.349.129
- J. W. Sands, Abelian fields and the Brumer-Stark conjecture, Compositio Math. 53 (1984), no. 3, 337–346. MR 768828
- Carl Ludwig Siegel, Über die Fourierschen Koeffizienten von Modulformen, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1970 (1970), 15–56 (German). MR 285488
- David Solomon, On the classgroups of imaginary abelian fields, Ann. Inst. Fourier (Grenoble) 40 (1990), no. 3, 467–492 (English, with French summary). MR 1091830, DOI 10.5802/aif.1221
- John Tate, On Stark’s conjectures on the behavior of $L(s,\,\chi )$ at $s=0$, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 963–978 (1982). MR 656067
- John Tate, Les conjectures de Stark sur les fonctions $L$ d’Artin en $s=0$, Progress in Mathematics, vol. 47, Birkhäuser Boston, Inc., Boston, MA, 1984 (French). Lecture notes edited by Dominique Bernardi and Norbert Schappacher. MR 782485
- A. Wiles, On a conjecture of Brumer, Ann. of Math. (2) 131 (1990), no. 3, 555–565. MR 1053490, DOI 10.2307/1971470
Bibliographic Information
- Cornelius Greither
- Affiliation: Institut für theoretische Informatik und Mathematik, Fakultät für Informatik, Universität der Bundeswehr München, 85577 Neubiberg, F. R. Germany
- Email: greither@informatik.unibw-muenchen.de
- Xavier-François Roblot
- Affiliation: Institut Girard Desargues, Université Claude Bernard (Lyon I), 69622 Villeurbanne, France
- Email: roblot@euler.univ-lyon1.fr
- Brett A. Tangedal
- Affiliation: Department of Mathematics, College of Charleston, Charleston, South Carolina 29424-0001
- MR Author ID: 612497
- Email: tangedalb@cofc.edu
- Received by editor(s): December 20, 2001
- Published electronically: June 19, 2003
- © Copyright 2003 American Mathematical Society
- Journal: Math. Comp. 73 (2004), 297-315
- MSC (2000): Primary 11R42; Secondary 11R29, 11R80, 11Y40
- DOI: https://doi.org/10.1090/S0025-5718-03-01565-5
- MathSciNet review: 2034123