The local discontinuous Galerkin method for the Oseen equations
HTML articles powered by AMS MathViewer
- by Bernardo Cockburn, Guido Kanschat and Dominik Schötzau;
- Math. Comp. 73 (2004), 569-593
- DOI: https://doi.org/10.1090/S0025-5718-03-01552-7
- Published electronically: May 21, 2003
- PDF | Request permission
Abstract:
We introduce and analyze the local discontinuous Galerkin method for the Oseen equations of incompressible fluid flow. For a class of shape-regular meshes with hanging nodes, we derive optimal a priori estimates for the errors in the velocity and the pressure in $L^2$- and negative-order norms. Numerical experiments are presented which verify these theoretical results and show that the method performs well for a wide range of Reynolds numbers.References
- Douglas N. Arnold, Franco Brezzi, Bernardo Cockburn, and L. Donatella Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001/02), no. 5, 1749–1779. MR 1885715, DOI 10.1137/S0036142901384162
- I. Babuška, C. E. Baumann, and J. T. Oden, A discontinuous $hp$ finite element method for diffusion problems: 1-D analysis, Comput. Math. Appl. 37 (1999), no. 9, 103–122. MR 1688050, DOI 10.1016/S0898-1221(99)00117-0
- Garth A. Baker, Finite element methods for elliptic equations using nonconforming elements, Math. Comp. 31 (1977), no. 137, 45–59. MR 431742, DOI 10.1090/S0025-5718-1977-0431742-5
- Garth A. Baker, Wadi N. Jureidini, and Ohannes A. Karakashian, Piecewise solenoidal vector fields and the Stokes problem, SIAM J. Numer. Anal. 27 (1990), no. 6, 1466–1485. MR 1080332, DOI 10.1137/0727085
- Carlos Erik Baumann and J. Tinsley Oden, A discontinuous $hp$ finite element method for convection-diffusion problems, Comput. Methods Appl. Mech. Engrg. 175 (1999), no. 3-4, 311–341. MR 1702201, DOI 10.1016/S0045-7825(98)00359-4
- Carlos Erik Baumann and J. Tinsley Oden, A discontinuous $hp$ finite element method for the Euler and Navier-Stokes equations, Internat. J. Numer. Methods Fluids 31 (1999), no. 1, 79–95. Tenth International Conference on Finite Elements in Fluids (Tucson, AZ, 1998). MR 1714511, DOI 10.1002/(SICI)1097-0363(19990915)31:1<79::AID-FLD956>3.0.CO;2-C
- Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. MR 1115205, DOI 10.1007/978-1-4612-3172-1
- P. Castillo, Performance of discontinuous Galerkin methods for elliptic partial differential equations, SIAM J. Sci. Comput., to appear.
- Paul Castillo, Bernardo Cockburn, Ilaria Perugia, and Dominik Schötzau, An a priori error analysis of the local discontinuous Galerkin method for elliptic problems, SIAM J. Numer. Anal. 38 (2000), no. 5, 1676–1706. MR 1813251, DOI 10.1137/S0036142900371003
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 520174
- Bernardo Cockburn, Guido Kanschat, Ilaria Perugia, and Dominik Schötzau, Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids, SIAM J. Numer. Anal. 39 (2001), no. 1, 264–285. MR 1860725, DOI 10.1137/S0036142900371544
- B. Cockburn, G. Kanschat, D. Schötzau, and C. Schwab, Local discontinuous Galerkin methods for the Stokes system, SIAM J. Numer. Anal. 40 (2002), 319–343.
- Bernardo Cockburn and Chi-Wang Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal. 35 (1998), no. 6, 2440–2463. MR 1655854, DOI 10.1137/S0036142997316712
- Bernardo Cockburn and Chi-Wang Shu, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput. 16 (2001), no. 3, 173–261. MR 1873283, DOI 10.1023/A:1012873910884
- Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR 851383, DOI 10.1007/978-3-642-61623-5
- P. Hansbo and M.G. Larson, Discontinuous finite element methods for incompressible and nearly incompressible elasticity by use of Nitsche’s method, Comput. Methods Appl. Mech. Engrg. 191 (2002), 1895–1908.
- P. Houston, C. Schwab, and E. Süli, Discontinuous $hp$-finite element methods for advection–diffusion–reaction problems, SIAM J. Numer. Anal. 39 (2002), 2133–2163.
- Ohannes A. Karakashian and Wadi N. Jureidini, A nonconforming finite element method for the stationary Navier-Stokes equations, SIAM J. Numer. Anal. 35 (1998), no. 1, 93–120. MR 1618436, DOI 10.1137/S0036142996297199
- Garrett Birkhoff and Morgan Ward, A characterization of Boolean algebras, Ann. of Math. (2) 40 (1939), 609–610. MR 9, DOI 10.2307/1968945
- P. Lasaint and P.-A. Raviart, On a finite element method for solving the neutron transport equation, Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974) Academic Press, New York-London, 1974, pp. 89–123. MR 658142
- Jian-Guo Liu and Chi-Wang Shu, A high-order discontinuous Galerkin method for 2D incompressible flows, J. Comput. Phys. 160 (2000), no. 2, 577–596. MR 1763825, DOI 10.1006/jcph.2000.6475
- —, A numerical example on the performance of high-order discontinuous Galerkin method for 2D incompressible flows, Discontinuous Galerkin Methods: Theory, Computation and Applications, Lect. Notes Comput. Sci. Eng., vol. 11, Springer, 2000, pp. 369–374.
- Jian-Guo Liu and Zhouping Xin, Convergence of a Galerkin method for 2-D discontinuous Euler flows, Comm. Pure Appl. Math. 53 (2000), no. 6, 786–798. MR 1744003, DOI 10.1002/(SICI)1097-0312(200006)53:6<786::AID-CPA3>3.3.CO;2-P
- J. Tinsley Oden, Ivo Babuška, and Carlos Erik Baumann, A discontinuous $hp$ finite element method for diffusion problems, J. Comput. Phys. 146 (1998), no. 2, 491–519. MR 1654911, DOI 10.1006/jcph.1998.6032
- J. Tinsley Oden and Carlos Erik Baumann, A conservative DGM for convection-diffusion and Navier-Stokes problems, Discontinuous Galerkin methods (Newport, RI, 1999) Lect. Notes Comput. Sci. Eng., vol. 11, Springer, Berlin, 2000, pp. 179–196. MR 1842173, DOI 10.1007/978-3-642-59721-3_{1}3
- W.H. Reed and T.R. Hill, Triangular mesh methods for the neutron transport equation, Tech. Report Tech. Report LA-UR-73-479, Los Alamos Scientific Laboratory, 1973.
- Roger Temam, Navier-Stokes equations, Revised edition, Studies in Mathematics and its Applications, vol. 2, North-Holland Publishing Co., Amsterdam-New York, 1979. Theory and numerical analysis; With an appendix by F. Thomasset. MR 603444
- A. Toselli, hp-discontinuous Galerkin approximations for the Stokes problem, Tech. Report 2002-02, Seminar for Applied Mathematics, ETH Zürich, 2002, to appear in Math. Models Methods Appl. Sci.
Bibliographic Information
- Bernardo Cockburn
- Affiliation: School of Mathematics, University of Minnesota, Vincent Hall, Minneapolis, Minnesota 55455
- Email: cockburn@math.umn.edu
- Guido Kanschat
- Affiliation: Institut für Angewandte Mathematik, Universität Heidelberg, Im Neuenheimer Feld 293/294, 69120 Heidelberg, Germany
- MR Author ID: 622524
- Email: kanschat@dgfem.org
- Dominik Schötzau
- Affiliation: Department of Mathematics, University of Basel, Rheinsprung 21, 4051 Basel, Switzerland
- Email: schotzau@math.unibas.ch
- Received by editor(s): February 14, 2002
- Received by editor(s) in revised form: August 21, 2002
- Published electronically: May 21, 2003
- Additional Notes: This work was carried out while the third author was a Dunham Jackson Assistant Professor at the School of Mathematics, University of Minnesota.
The first and third authors were supported in part by the National Science Foundation (Grant DMS-0107609) and by the University of Minnesota Supercomputing Institute
The second author was supported in part by “Deutsche Forschungsgemeinschaft” through SFB 359 and Schwerpunktprogramm ANumE) - © Copyright 2003 American Mathematical Society
- Journal: Math. Comp. 73 (2004), 569-593
- MSC (2000): Primary 65N30
- DOI: https://doi.org/10.1090/S0025-5718-03-01552-7
- MathSciNet review: 2031395