Elliptic curves with nonsplit mod $11$ representations
HTML articles powered by AMS MathViewer
- by Imin Chen and Chris Cummins;
- Math. Comp. 73 (2004), 869-880
- DOI: https://doi.org/10.1090/S0025-5718-03-01562-X
- Published electronically: June 17, 2003
- PDF | Request permission
Abstract:
We calculate explicitly the $j$-invariants of the elliptic curves corresponding to rational points on the modular curve $X_{ns}^+(11)$ by giving an expression defined over $\mathbb {Q}$ of the $j$-function in terms of the function field generators $X$ and $Y$ of the elliptic curve $X_{ns}^+(11)$. As a result we exhibit infinitely many elliptic curves over $\mathbb {Q}$ with nonsplit mod $11$ representations.References
- B. J. Birch and W. Kuyk (eds.), Modular functions of one variable. IV, Lecture Notes in Mathematics, Vol. 476, Springer-Verlag, Berlin-New York, 1975. MR 376533
- I. Chen. The Jacobian of Modular Curves Associated to Cartan Subgroups. PhD thesis, University of Oxford, 1996.
- I. Chen. Surjectivity of mod $\ell$ representations attached to elliptic curves and congruence primes. To appear in the Canadian Mathematical Bulletin, 2002.
- P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptiques, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 349, Springer, Berlin-New York, 1973, pp. 143–316 (French). MR 337993
- Nicholas M. Katz and Barry Mazur, Arithmetic moduli of elliptic curves, Annals of Mathematics Studies, vol. 108, Princeton University Press, Princeton, NJ, 1985. MR 772569, DOI 10.1515/9781400881710
- M. A. Kenku, A note on the integral points of a modular curve of level $7$, Mathematika 32 (1985), no. 1, 45–48. MR 817106, DOI 10.1112/S0025579300010846
- Daniel S. Kubert and Serge Lang, Modular units, Grundlehren der Mathematischen Wissenschaften, vol. 244, Springer-Verlag, New York-Berlin, 1981. MR 648603
- Dan Kubert, Quadratic relations for generators of units in the modular function field, Math. Ann. 225 (1977), no. 1, 1–20. MR 432548, DOI 10.1007/BF01364888
- Gérard Ligozat, Courbes modulaires de niveau $11$, Modular functions of one variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976) Lecture Notes in Math., Vol. 601, Springer, Berlin-New York, 1977, pp. 149–237 (French). MR 463118
- B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), no. 2, 129–162. MR 482230, DOI 10.1007/BF01390348
- Jean-Pierre Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), no. 4, 259–331 (French). MR 387283, DOI 10.1007/BF01405086
- Jean-Pierre Serre, Lectures on the Mordell-Weil theorem, Aspects of Mathematics, E15, Friedr. Vieweg & Sohn, Braunschweig, 1989. Translated from the French and edited by Martin Brown from notes by Michel Waldschmidt. MR 1002324, DOI 10.1007/978-3-663-14060-3
- Carl Ludwig Siegel, Zum Beweise des Starkschen Satzes, Invent. Math. 5 (1968), 180–191 (German). MR 228465, DOI 10.1007/BF01425549
Bibliographic Information
- Imin Chen
- Affiliation: Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, Canada, V5A 1S6
- MR Author ID: 609304
- Email: ichen@math.sfu.ca
- Chris Cummins
- Affiliation: Department of Mathematics and Statistics, Concordia University, Montreal, Quebec, Canada, H3G 1M8
- Email: cummins@mathstat.concordia.ca
- Received by editor(s): May 2, 2002
- Received by editor(s) in revised form: September 11, 2002
- Published electronically: June 17, 2003
- Additional Notes: Research supported by NSERC
- © Copyright 2003 American Mathematical Society
- Journal: Math. Comp. 73 (2004), 869-880
- MSC (2000): Primary 11G05; Secondary 14G05
- DOI: https://doi.org/10.1090/S0025-5718-03-01562-X
- MathSciNet review: 2031412