Gaussian elimination is stable for the inverse of a diagonally dominant matrix
HTML articles powered by AMS MathViewer
- by Alan George and Khakim D. Ikramov;
- Math. Comp. 73 (2004), 653-657
- DOI: https://doi.org/10.1090/S0025-5718-03-01591-6
- Published electronically: October 17, 2003
- PDF | Request permission
Abstract:
Let $B\in M_n({\mathbf {C}})$ be a row diagonally dominant matrix, i.e., \[ \sigma _i |b_{ii}| = \sum _{\substack {j=1 j\ne i }}^n |b_{ij}|, \quad i = 1,\ldots ,n, \] where $0 \le \sigma _i < 1,\ i= 1,\ldots ,n,$ with $\sigma = \max _{1\le i \le n} \sigma _i.$ We show that no pivoting is necessary when Gaussian elimination is applied to $A = B^{-1}.$ Moreover, the growth factor for $A$ does not exceed $1 + \sigma .$ The same results are true with row diagonal dominance being replaced by column diagonal dominance.References
- Nicholas J. Higham, Factorizing complex symmetric matrices with positive definite real and imaginary parts, Math. Comp. 67 (1998), no. 224, 1591–1599. MR 1474652, DOI 10.1090/S0025-5718-98-00978-8
- F. R. Gantmacher, Matrizenrechnung. II. Spezielle Fragen und Anwendungen, Hochschulbücher für Mathematik [University Books for Mathematics], Band 37, VEB Deutscher Verlag der Wissenschaften, Berlin, 1959 (German). MR 107647
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- Roger A. Horn and Charles R. Johnson, Matrix analysis, Cambridge University Press, Cambridge, 1985. MR 832183, DOI 10.1017/CBO9780511810817
- M. Neumann and R. J. Plemmons, Backward error analysis for linear systems associated with inverses of $H$-matrices, BIT 24 (1984), no. 1, 102–112. MR 740272, DOI 10.1007/BF01934520
- R. A. Willoughby, The inverse $M$-matrix problem, Linear Algebra Appl. 18 (1977), no. 1, 75–94. MR 472874, DOI 10.1016/0024-3795(77)90081-7
- R. S. Anderssen and Peter Bloomfield, A time series approach to numerical differentiation, Technometrics 16 (1974), 69–75. MR 398034, DOI 10.2307/1267494
- Harvey S. Leff, Correlation inequalities for coupled oscillators, J. Mathematical Phys. 12 (1971), 569–578. MR 282613, DOI 10.1063/1.1665622
- Nicholas J. Higham, Accuracy and stability of numerical algorithms, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. MR 1368629
Bibliographic Information
- Alan George
- Affiliation: School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
- Khakim D. Ikramov
- Affiliation: Faculty of Computational Mathematics and Cybernetics, Moscow State University, 119992 Moscow, Russia
- Email: ikramov@cs.msu.su
- Received by editor(s): February 13, 2002
- Received by editor(s) in revised form: August 1, 2002
- Published electronically: October 17, 2003
- Additional Notes: This work was supported by Natural Sciences and Engineering Research Council of Canada grant OGP0008111
- © Copyright 2003 American Mathematical Society
- Journal: Math. Comp. 73 (2004), 653-657
- MSC (2000): Primary 65F10
- DOI: https://doi.org/10.1090/S0025-5718-03-01591-6
- MathSciNet review: 2031399