A lower bound for rank 2 lattice rules
HTML articles powered by AMS MathViewer
- by Friedrich Pillichshammer;
- Math. Comp. 73 (2004), 853-860
- DOI: https://doi.org/10.1090/S0025-5718-03-01596-5
- Published electronically: July 29, 2003
- PDF | Request permission
Abstract:
We give a lower bound for a quality measure of rank 2 lattice rules which shows that an existence result of Niederreiter is essentially best possible.References
- Edmund Hlawka, Zur angenäherten Berechnung mehrfacher Integrale, Monatsh. Math. 66 (1962), 140–151 (German). MR 143329, DOI 10.1007/BF01387711
- N. M. Korobov, Teoretiko-chislovye metody v priblizhennom analize, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1963 (Russian). MR 157483
- L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR 419394
- Gerhard Larcher, A best lower bound for good lattice points, Monatsh. Math. 104 (1987), no. 1, 45–51. MR 903774, DOI 10.1007/BF01540524
- Harald Niederreiter, Existence of good lattice points in the sense of Hlawka, Monatsh. Math. 86 (1978/79), no. 3, 203–219. MR 517026, DOI 10.1007/BF01659720
- Harald Niederreiter, The existence of efficient lattice rules for multidimensional numerical integration, Math. Comp. 58 (1992), no. 197, 305–314, S7–S16. MR 1106976, DOI 10.1090/S0025-5718-1992-1106976-5
- Harald Niederreiter, Random number generation and quasi-Monte Carlo methods, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 63, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1172997, DOI 10.1137/1.9781611970081
- Harald Niederreiter and Ian H. Sloan, Lattice rules for multiple integration and discrepancy, Math. Comp. 54 (1990), no. 189, 303–312. MR 995212, DOI 10.1090/S0025-5718-1990-0995212-4
- I. H. Sloan and S. Joe, Lattice methods for multiple integration, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1994. MR 1442955
- I. H. Sloan and J. N. Lyness, Lattice rules: projection regularity and unique representations, Math. Comp. 54 (1990), no. 190, 649–660. MR 1011443, DOI 10.1090/S0025-5718-1990-1011443-1
Bibliographic Information
- Friedrich Pillichshammer
- Affiliation: Institut für Analysis, Universität Linz, Altenbergerstraße 69, A-4040 Linz, Austria
- MR Author ID: 661956
- ORCID: 0000-0001-6952-9218
- Email: friedrich.pillichshammer@jku.at
- Received by editor(s): August 5, 2002
- Received by editor(s) in revised form: November 8, 2002
- Published electronically: July 29, 2003
- Additional Notes: Supported by the Austrian Research Foundation (FWF), project S 8305.
- © Copyright 2003 American Mathematical Society
- Journal: Math. Comp. 73 (2004), 853-860
- MSC (2000): Primary 11K06, 65D32, 41A55
- DOI: https://doi.org/10.1090/S0025-5718-03-01596-5
- MathSciNet review: 2031410