All first-order averaging techniques for a posteriori finite element error control on unstructured grids are efficient and reliable
HTML articles powered by AMS MathViewer
- by C. Carstensen;
- Math. Comp. 73 (2004), 1153-1165
- DOI: https://doi.org/10.1090/S0025-5718-03-01580-1
- Published electronically: August 12, 2003
- PDF | Request permission
Abstract:
All first-order averaging or gradient-recovery operators for lowest-order finite element methods are shown to allow for an efficient a posteriori error estimation in an isotropic, elliptic model problem in a bounded Lipschitz domain $\Omega$ in $\mathbb {R}^d$. Given a piecewise constant discrete flux $p_h\in P_h$ (that is the gradient of a discrete displacement) as an approximation to the unknown exact flux $p$ (that is the gradient of the exact displacement), recent results verify efficiency and reliability of \[ \eta _M:=\min \{\|p_h-q_h\|_{L^2(\Omega )}: q_h\in \mathcal {Q}_h\} \] in the sense that $\eta _M$ is a lower and upper bound of the flux error $\|p-p_h\|_{L^2(\Omega )}$ up to multiplicative constants and higher-order terms. The averaging space $\mathcal {Q}_h$ consists of piecewise polynomial and globally continuous finite element functions in $d$ components with carefully designed boundary conditions. The minimal value $\eta _M$ is frequently replaced by some averaging operator $A: P_h\rightarrow \mathcal {Q}_h$ applied within a simple post-processing to $p_h$. The result $q_h:=Ap_h\in \mathcal {Q}_h$ provides a reliable error bound with $\eta _M\leq \eta _A:=\|p_h-Ap_h\|_{L^2(\Omega )}$. This paper establishes $\eta _A\leq C_{\mbox {\tiny eff}} \eta _M$ and so equivalence of $\eta _M$ and $\eta _A$. This implies efficiency of $\eta _A$ for a large class of patchwise averaging techniques which includes the ZZ-gradient-recovery technique. The bound $C_{\mbox {\tiny eff}}\le 3.88$ established for tetrahedral $P_1$ finite elements appears striking in that the shape of the elements does not enter: The equivalence $\eta _A\approx \eta _M$ is robust with respect to anisotropic meshes. The main arguments in the proof are Ascoli’s lemma, a strengthened Cauchy inequality, and elementary calculations with mass matrices.References
- Mark Ainsworth and J. Tinsley Oden, A posteriori error estimation in finite element analysis, Pure and Applied Mathematics (New York), Wiley-Interscience [John Wiley & Sons], New York, 2000. MR 1885308, DOI 10.1002/9781118032824
- Ivo Babuška and Theofanis Strouboulis, The finite element method and its reliability, Numerical Mathematics and Scientific Computation, The Clarendon Press, Oxford University Press, New York, 2001. MR 1857191
- Sören Bartels and Carsten Carstensen, Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. II. Higher order FEM, Math. Comp. 71 (2002), no. 239, 971–994. MR 1898742, DOI 10.1090/S0025-5718-02-01412-6
- S. Bartels, C. Carstensen: Averaging techniques yield reliable a posteriori finite element error control for obstacle problems. Numer. Math. (2003) to appear.
- R. Becker and R. Rannacher, A feed-back approach to error control in finite element methods: basic analysis and examples, East-West J. Numer. Math. 4 (1996), no. 4, 237–264. MR 1430239
- Dietrich Braess, Enhanced assumed strain elements and locking in membrane problems, Comput. Methods Appl. Mech. Engrg. 165 (1998), no. 1-4, 155–174. MR 1663532, DOI 10.1016/S0045-7825(98)00037-1
- Carsten Carstensen, Quasi-interpolation and a posteriori error analysis in finite element methods, M2AN Math. Model. Numer. Anal. 33 (1999), no. 6, 1187–1202. MR 1736895, DOI 10.1051/m2an:1999140
- C. Carstensen, J. Alberty: Averaging techniques for reliable a posteriori FE-error control in elastoplasticity with hardening. Comput. Methods Appl. Mech. Engrg. 192 (2003) 1435–1450.
- Carsten Carstensen and Sören Bartels, Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. I. Low order conforming, nonconforming, and mixed FEM, Math. Comp. 71 (2002), no. 239, 945–969. MR 1898741, DOI 10.1090/S0025-5718-02-01402-3
- C. Carstensen, S. Bartels, S. Jansche: A posteriori error estimates for nonconforming finite element methods. Numer. Math. 92 (2002) 233–256.
- C. Carstensen and S. A. Funken, Constants in Clément-interpolation error and residual based a posteriori error estimates in finite element methods, East-West J. Numer. Math. 8 (2000), no. 3, 153–175. MR 1807259
- Carsten Carstensen and Stefan A. Funken, Fully reliable localized error control in the FEM, SIAM J. Sci. Comput. 21 (1999/00), no. 4, 1465–1484. MR 1742328, DOI 10.1137/S1064827597327486
- M. Gontcharoff, Sur quelques séries d’interpolation généralisant celles de Newton et de Stirling, Uchenye Zapiski Moskov. Gos. Univ. Matematika 30 (1939), 17–48 (Russian, with French summary). MR 2002
- Carsten Carstensen and Stefan A. Funken, A posteriori error control in low-order finite element discretisations of incompressible stationary flow problems, Math. Comp. 70 (2001), no. 236, 1353–1381. MR 1836908, DOI 10.1090/S0025-5718-00-01264-3
- Carsten Carstensen and Rüdiger Verfürth, Edge residuals dominate a posteriori error estimates for low order finite element methods, SIAM J. Numer. Anal. 36 (1999), no. 5, 1571–1587. MR 1706735, DOI 10.1137/S003614299732334X
- Ricardo H. Nochetto, Removing the saturation assumption in a posteriori error analysis, Istit. Lombardo Accad. Sci. Lett. Rend. A 127 (1993), no. 1, 67–82 (1994) (English, with Italian summary). MR 1284844
- Rodolfo Rodríguez, Some remarks on Zienkiewicz-Zhu estimator, Numer. Methods Partial Differential Equations 10 (1994), no. 5, 625–635. MR 1290948, DOI 10.1002/num.1690100509
- Rodolfo Rodríguez, A posteriori error analysis in the finite element method, Finite element methods (Jyväskylä, 1993) Lecture Notes in Pure and Appl. Math., vol. 164, Dekker, New York, 1994, pp. 389–397. MR 1300004
- R. Verfürth: A review of a posteriori error estimation and adaptive mesh-refinement techniques, 1996, Wiley-Teubner.
- O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis, Internat. J. Numer. Methods Engrg. 24 (1987), no. 2, 337–357. MR 875306, DOI 10.1002/nme.1620240206
Bibliographic Information
- C. Carstensen
- Affiliation: Institute for Applied Mathematics and Numerical Analysis, Vienna University of Technology, Wiedner Hauptstraße 8-10, A-1040 Vienna, Austria
- Email: Carsten.Carstensen@tuwien.ac.at
- Received by editor(s): July 26, 2002
- Received by editor(s) in revised form: January 1, 2003
- Published electronically: August 12, 2003
- © Copyright 2003 American Mathematical Society
- Journal: Math. Comp. 73 (2004), 1153-1165
- MSC (2000): Primary 65N30; Secondary 65N15
- DOI: https://doi.org/10.1090/S0025-5718-03-01580-1
- MathSciNet review: 2047082