Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Numerical simulation of stochastic evolution equations associated to quantum Markov semigroups
HTML articles powered by AMS MathViewer

by Carlos M. Mora PDF
Math. Comp. 73 (2004), 1393-1415 Request permission

Abstract:

We address the problem of approximating numerically the solutions $\left ( X_{t}:t\in \left [ 0,T\right ] \right )$ of stochastic evolution equations on Hilbert spaces $\left ( \mathfrak {h},\left \langle \cdot ,\cdot \right \rangle \right )$, with respect to Brownian motions, arising in the unraveling of backward quantum master equations. In particular, we study the computation of mean values of $\left \langle X_{t},AX_{t}\right \rangle$, where $A$ is a linear operator. First, we introduce estimates on the behavior of $X_{t}$. Then we characterize the error induced by the substitution of $X_{t}$ with the solution $X_{t,n}$ of a convenient stochastic ordinary differential equation. It allows us to establish the rate of convergence of $\mathbf {E} \left \langle \tilde {X}_{t,n},A\tilde {X}_{t,n}\right \rangle$ to $\mathbf {E} \left \langle X_{t},AX_{t}\right \rangle$, where $\tilde {X}_{t,n}$ denotes the explicit Euler method. Finally, we consider an extrapolation method based on the Euler scheme. An application to the quantum harmonic oscillator system is included.
References
  • Radu Balescu, Equilibrium and nonequilibrium statistical mechanics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1975. MR 0408641
  • A. Barchielli, A. M. Paganoni, and F. Zucca, On stochastic differential equations and semigroups of probability operators in quantum probability, Stochastic Process. Appl. 73 (1998), no. 1, 69–86. MR 1603834, DOI 10.1016/S0304-4149(97)00093-8
  • H. Carmichael, An open systems approach to quantum optics. Lecture Notes in Physics. Springer-Verlag (1993).
  • C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum mechanics. Volume 1. Hermann (1977).
  • A. M. Chebotarev and F. Fagnola, Sufficient conditions for conservativity of minimal quantum dynamical semigroups, J. Funct. Anal. 153 (1998), no. 2, 382–404. MR 1614586, DOI 10.1006/jfan.1997.3189
  • Franco Fagnola, Rolando Rebolledo, and Carlos Saavedra, Quantum flows associated to master equations in quantum optics, J. Math. Phys. 35 (1994), no. 1, 1–12. MR 1252096, DOI 10.1063/1.530788
  • Franco Fagnola, Quantum Markov semigroups and quantum flows, Proyecciones 18 (1999), no. 3, 144. MR 1814506, DOI 10.22199/s07160917.1999.0003.00006
  • F. Fagnola, S. J. Wills, Solving quantum stochastic differential equations with unbounded coefficients. J. Funct. Anal. 198 (2003), 279–310.
  • Nicolas Gisin and Ian C. Percival, The quantum-state diffusion model applied to open systems, J. Phys. A 25 (1992), no. 21, 5677–5691. MR 1192024
  • A. S. Holevo, On dissipative stochastic equations in a Hilbert space, Probab. Theory Related Fields 104 (1996), no. 4, 483–500. MR 1384042, DOI 10.1007/BF01198163
  • A. S. Holevo, On dissipative stochastic equations in a Hilbert space, Probab. Theory Related Fields 104 (1996), no. 4, 483–500. MR 1384042, DOI 10.1007/BF01198163
  • Tosio Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. MR 1335452
  • Peter E. Kloeden and Eckhard Platen, Numerical solution of stochastic differential equations, Applications of Mathematics (New York), vol. 23, Springer-Verlag, Berlin, 1992. MR 1214374, DOI 10.1007/978-3-662-12616-5
  • Tarso B.L. Kist, M. Orszag, T.A. Brun, L. Davidovich, Stochastic Schrödinger equations in cavity QDE: physical interpretation and localization. J. Opt. B: Quantum Semiclass. Opt. 1 (1999), 251–263.
  • Robert Dautray and Jacques-Louis Lions, Mathematical analysis and numerical methods for science and technology. Vol. 5, Springer-Verlag, Berlin, 1992. Evolution problems. I; With the collaboration of Michel Artola, Michel Cessenat and Hélène Lanchon; Translated from the French by Alan Craig. MR 1156075, DOI 10.1007/978-3-642-58090-1
  • G.N. Milstein, The numerical integration of stochastic differentials equations. Ural University Press (1988).
  • C. Mora, Solución numérica de ecuaciones diferenciales estocásticas mediante métodos exponenciales. Ph.D. Thesis, Pontificia Universidad Católica de Chile (2002).
  • A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486, DOI 10.1007/978-1-4612-5561-1
  • Ian Percival, Quantum state diffusion, Cambridge University Press, Cambridge, 1998. MR 1666826
  • Philip Protter, Stochastic integration and differential equations, Applications of Mathematics (New York), vol. 21, Springer-Verlag, Berlin, 1990. A new approach. MR 1037262, DOI 10.1007/978-3-662-02619-9
  • M.O. Scully, M.S. Zubairy, Quantum optics. Cambridge University Press (1997).
  • Walter T. Strunz, Lajos Diósi, Nicolas Gisin, and Ting Yu, Quantum trajectories for Brownian motion, Phys. Rev. Lett. 83 (1999), no. 24, 4909–4913. MR 1727574, DOI 10.1103/PhysRevLett.83.4909
  • Denis Talay, Efficient numerical schemes for the approximation of expectations of functionals of the solution of a SDE and applications, Filtering and control of random processes (Paris, 1983) Lect. Notes Control Inf. Sci., vol. 61, Springer, Berlin, 1984, pp. 294–313. MR 874837, DOI 10.1007/BFb0006577
  • Denis Talay, Discrétisation d’une équation différentielle stochastique et calcul approché d’espérances de fonctionnelles de la solution, RAIRO Modél. Math. Anal. Numér. 20 (1986), no. 1, 141–179 (French, with English summary). MR 844521, DOI 10.1051/m2an/1986200101411
  • Denis Talay and Luciano Tubaro, Expansion of the global error for numerical schemes solving stochastic differential equations, Stochastic Anal. Appl. 8 (1990), no. 4, 483–509 (1991). MR 1091544, DOI 10.1080/07362999008809220
  • D. Talay, Stochastic Hamiltonian systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme, Markov Process. Related Fields 8 (2002), no. 2, 163–198. Inhomogeneous random systems (Cergy-Pontoise, 2001). MR 1924934
Similar Articles
Additional Information
  • Carlos M. Mora
  • Affiliation: Departamento de Ingeniería Matemática, Universidad de Concepción, Concepción, Chile
  • Address at time of publication: Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160 C, Concepción, Chile
  • Email: cmora@ing-mat.udec.cl
  • Received by editor(s): August 25, 2002
  • Received by editor(s) in revised form: January 7, 2003
  • Published electronically: August 4, 2003
  • Additional Notes: This research has been partially supported by FONDECYT grant 2000036, a DIPUC Ph.D. grant and the program “Cátedra Presidencial on Qualitative Analysis of Quantum Dynamical Systems”.
  • © Copyright 2003 American Mathematical Society
  • Journal: Math. Comp. 73 (2004), 1393-1415
  • MSC (2000): Primary 60H35; Secondary 60H10, 60H15, 60H30, 65C30, 65C05
  • DOI: https://doi.org/10.1090/S0025-5718-03-01595-3
  • MathSciNet review: 2047093