Analysis of recovery type a posteriori error estimators for mildly structured grids
HTML articles powered by AMS MathViewer
- by Jinchao Xu and Zhimin Zhang;
- Math. Comp. 73 (2004), 1139-1152
- DOI: https://doi.org/10.1090/S0025-5718-03-01600-4
- Published electronically: August 19, 2003
- HTML | PDF | Request permission
Abstract:
Some recovery type error estimators for linear finite elements are analyzed under $O(h^{1+\alpha })$ $(\alpha > 0)$ regular grids. Superconvergence of order $O(h^{1+\rho })$ $(0 < \rho \le \alpha )$ is established for recovered gradients by three different methods. As a consequence, a posteriori error estimators based on those recovery methods are asymptotically exact.References
- Mark Ainsworth and J. Tinsley Oden, A posteriori error estimation in finite element analysis, Pure and Applied Mathematics (New York), Wiley-Interscience [John Wiley & Sons], New York, 2000. MR 1885308, DOI 10.1002/9781118032824
- I. Babuška and W.C. Rheinboldt, A Posteriori Error Estimates for the Finite Element Method, Internat. J. Numer. Methods Engrg., 12 (1978), pp.1597-1615.
- Ivo Babuška and Theofanis Strouboulis, The finite element method and its reliability, Numerical Mathematics and Scientific Computation, The Clarendon Press, Oxford University Press, New York, 2001. MR 1857191
- R. E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Math. Comp. 44 (1985), no. 170, 283–301. MR 777265, DOI 10.1090/S0025-5718-1985-0777265-X
- R.E. Bank and J. Xu, Asymptotically exact a posteriori error estimators, Part I: Grid with superconvergence, preprint, to appear in SIAM J. Numer. Anal.
- R.E. Bank and J. Xu, Asymptotically exact a posteriori error estimators, Part II: General Unstructured Grids, preprint, to appear in SIAM J. Numer. Anal.
- C. Carstensen and S. Bartels, Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM, Math. Comp. 71 (2002), 945-969.
- C.M. Chen and Y.Q. Huang, High Accuracy Theory of Finite Element Methods. Hunan Science Press, Hunan, China, 1995 (in Chinese).
- W. Hoffmann, A. H. Schatz, L. B. Wahlbin, and G. Wittum, Asymptotically exact a posteriori estimators for the pointwise gradient error on each element in irregular meshes. I. A smooth problem and globally quasi-uniform meshes, Math. Comp. 70 (2001), no. 235, 897–909. MR 1826572, DOI 10.1090/S0025-5718-01-01286-8
- M. Křížek, P. Neittaanmäki, and R. Stenberg (eds.), Finite element methods, Lecture Notes in Pure and Applied Mathematics, vol. 196, Marcel Dekker, Inc., New York, 1998. Superconvergence, post-processing, and a posteriori estimates; Papers from the conference held at the University of Jyväskylä, Jyväskylä, 1997. MR 1602809
- Bo Li and Zhimin Zhang, Analysis of a class of superconvergence patch recovery techniques for linear and bilinear finite elements, Numer. Methods Partial Differential Equations 15 (1999), no. 2, 151–167. MR 1674357, DOI 10.1002/(SICI)1098-2426(199903)15:2<151::AID-NUM2>3.0.CO;2-O
- Q. Lin and N. Yan, Construction and Analysis of High Efficient Finite Elements (in Chinese), Hebei University Press, P.R. China, 1996.
- A. H. Schatz and L. B. Wahlbin, Interior maximum-norm estimates for finite element methods. II, Math. Comp. 64 (1995), no. 211, 907–928. MR 1297478, DOI 10.1090/S0025-5718-1995-1297478-7
- R. Verfürth, A Posteriori Error Estimation and Adaptive Mesh Refinement Techniques, Teubner Skripten zur Numerik, B.G. Teubner, Stuttgart, 1995.
- Lars B. Wahlbin, Superconvergence in Galerkin finite element methods, Lecture Notes in Mathematics, vol. 1605, Springer-Verlag, Berlin, 1995. MR 1439050, DOI 10.1007/BFb0096835
- Ningning Yan and Aihui Zhou, Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes, Comput. Methods Appl. Mech. Engrg. 190 (2001), no. 32-33, 4289–4299. MR 1832657, DOI 10.1016/S0045-7825(00)00319-4
- Zhimin Zhang, Ultraconvergence of the patch recovery technique. II, Math. Comp. 69 (2000), no. 229, 141–158. MR 1680911, DOI 10.1090/S0025-5718-99-01205-3
- Zhimin Zhang and Harold Dean Victory Jr., Mathematical analysis of Zienkiewicz-Zhu’s derivative patch recovery technique, Numer. Methods Partial Differential Equations 12 (1996), no. 4, 507–524. MR 1396469, DOI 10.1002/(SICI)1098-2426(199607)12:4<507::AID-NUM6>3.0.CO;2-Q
- Q.D. Zhu and Q. Lin, Superconvergence Theory of the Finite Element Method, Hunan Science Press, China, 1989 (in Chinese).
- J. Z. Zhu and Zhimin Zhang, The relationship of some a posteriori estimators, Comput. Methods Appl. Mech. Engrg. 176 (1999), no. 1-4, 463–475. New advances in computational methods (Cachan, 1997). MR 1665357, DOI 10.1016/S0045-7825(98)00349-1
- O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis, Internat. J. Numer. Methods Engrg. 24 (1987), no. 2, 337–357. MR 875306, DOI 10.1002/nme.1620240206
- O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery and a posteriori error estimates. I. The recovery technique, Internat. J. Numer. Methods Engrg. 33 (1992), no. 7, 1331–1364. MR 1161557, DOI 10.1002/nme.1620330702
- O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery and a posteriori error estimates. II. Error estimates and adaptivity, Internat. J. Numer. Methods Engrg. 33 (1992), no. 7, 1365–1382. MR 1161558, DOI 10.1002/nme.1620330703
Bibliographic Information
- Jinchao Xu
- Affiliation: Center for Computational Mathematics and Applications, Department of Mathematics, The Pennsylvania State University, University Park, Pennsylvania 16802
- MR Author ID: 228866
- Email: xu@math.psu.edu
- Zhimin Zhang
- Affiliation: Department of Mathematics, Wayne State University, Detroit, Michigan 48202
- MR Author ID: 303173
- Email: zzhang@math.wayne.edu
- Received by editor(s): June 26, 2002
- Received by editor(s) in revised form: December 15, 2002
- Published electronically: August 19, 2003
- Additional Notes: The work of the first author was supported in part by the National Science Foundation grant DMS-9706949 and the Center for Computational Mathematics and Applications, Penn State University
The work of the second author was supported in part by the National Science Foundation grants DMS-0074301, DMS-0079743, and INT-0196139 - © Copyright 2003 American Mathematical Society
- Journal: Math. Comp. 73 (2004), 1139-1152
- MSC (2000): Primary 65N30; Secondary 65N50, 65N15, 65N12, 65D10, 74S05, 41A10, 41A25
- DOI: https://doi.org/10.1090/S0025-5718-03-01600-4
- MathSciNet review: 2047081