Analysis of finite element approximation for time-dependent Maxwell problems
HTML articles powered by AMS MathViewer
- by Jun Zhao;
- Math. Comp. 73 (2004), 1089-1105
- DOI: https://doi.org/10.1090/S0025-5718-03-01603-X
- Published electronically: October 2, 2003
- PDF | Request permission
Abstract:
We provide an error analysis of finite element methods for solving time-dependent Maxwell problem using Nedelec and Thomas-Raviart elements. We study the regularity of the solution and develop some new error estimates of Nedelec finite elements. As a result, the optimal $\boldsymbol {L}^2$-error bound for the semidiscrete scheme is obtained.References
- Ana Alonso and Alberto Valli, An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations, Math. Comp. 68 (1999), no. 226, 607–631. MR 1609607, DOI 10.1090/S0025-5718-99-01013-3
- C. Amrouche, C. Bernardi, M. Dauge, and V. Girault, Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci. 21 (1998), no. 9, 823–864 (English, with English and French summaries). MR 1626990, DOI 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B
- Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Multigrid in $H(\textrm {div})$ and $H(\textrm {curl})$, Numer. Math. 85 (2000), no. 2, 197–217. MR 1754719, DOI 10.1007/PL00005386
- F. Assous, P. Degond, E. Heintze, P.-A. Raviart, and J. Segre, On a finite-element method for solving the three-dimensional Maxwell equations, J. Comput. Phys. 109 (1993), no. 2, 222–237. MR 1253460, DOI 10.1006/jcph.1993.1214
- C. Bacuta, J.H. Bramble, and J.E. Pasciak, Using finite element tools in proving shift theorems for elliptic boundary value problems, Journal of Computational Linear Algebra, 10, 2003, pp. 33–64.
- Garth A. Baker and James H. Bramble, Semidiscrete and single step fully discrete approximations for second order hyperbolic equations, RAIRO Anal. Numér. 13 (1979), no. 2, 75–100 (English, with French summary). MR 533876, DOI 10.1051/m2an/1979130200751
- Daniele Boffi, Fortin operator and discrete compactness for edge elements, Numer. Math. 87 (2000), no. 2, 229–246. MR 1804657, DOI 10.1007/s002110000182
- James H. Bramble and J. Thomas King, A finite element method for interface problems in domains with smooth boundaries and interfaces, Adv. Comput. Math. 6 (1996), no. 2, 109–138 (1997). MR 1431789, DOI 10.1007/BF02127700
- James H. Bramble and Jinchao Xu, Some estimates for a weighted $L^2$ projection, Math. Comp. 56 (1991), no. 194, 463–476. MR 1066830, DOI 10.1090/S0025-5718-1991-1066830-3
- Zhiming Chen, Qiang Du, and Jun Zou, Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients, SIAM J. Numer. Anal. 37 (2000), no. 5, 1542–1570. MR 1759906, DOI 10.1137/S0036142998349977
- P. Ciarlet Jr. and Jun Zou, Fully discrete finite element approaches for time-dependent Maxwell’s equations, Numer. Math. 82 (1999), no. 2, 193–219 (English, with English and French summaries). MR 1685459, DOI 10.1007/s002110050417
- Martin Costabel, Monique Dauge, and Serge Nicaise, Singularities of Maxwell interface problems, M2AN Math. Model. Numer. Anal. 33 (1999), no. 3, 627–649. MR 1713241, DOI 10.1051/m2an:1999155
- Robert Dautray and Jacques-Louis Lions, Mathematical analysis and numerical methods for science and technology. Vol. 1, Springer-Verlag, Berlin, 1990. Physical origins and classical methods; With the collaboration of Philippe Bénilan, Michel Cessenat, André Gervat, Alain Kavenoky and Hélène Lanchon; Translated from the French by Ian N. Sneddon; With a preface by Jean Teillac. MR 1036731
- G. Duvaut and J.-L. Lions, Inequalities in mechanics and physics, Grundlehren der Mathematischen Wissenschaften, vol. 219, Springer-Verlag, Berlin-New York, 1976. Translated from the French by C. W. John. MR 521262
- Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR 851383, DOI 10.1007/978-3-642-61623-5
- P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 775683
- Raytcho D. Lazarov, Joseph E. Pasciak, and Panayot S. Vassilevski, Iterative solution of a coupled mixed and standard Galerkin discretization method for elliptic problems, Numer. Linear Algebra Appl. 8 (2001), no. 1, 13–31. MR 1809452, DOI 10.1002/1099-1506(200101/02)8:1<13::AID-NLA225>3.0.CO;2-G
- K. Lemrabet, An interface problem in a domain of $\textbf {R}^{3}$, J. Math. Anal. Appl. 63 (1978), no. 3, 549–562. MR 493687, DOI 10.1016/0022-247X(78)90059-8
- Ch. G. Makridakis and P. Monk, Time-discrete finite element schemes for Maxwell’s equations, RAIRO Modél. Math. Anal. Numér. 29 (1995), no. 2, 171–197 (English, with English and French summaries). MR 1332480, DOI 10.1051/m2an/1995290201711
- Peter B. Monk, A mixed method for approximating Maxwell’s equations, SIAM J. Numer. Anal. 28 (1991), no. 6, 1610–1634. MR 1135758, DOI 10.1137/0728081
- Peter Monk, Analysis of a finite element method for Maxwell’s equations, SIAM J. Numer. Anal. 29 (1992), no. 3, 714–729. MR 1163353, DOI 10.1137/0729045
- J.-C. Nédélec, Mixed finite elements in $\textbf {R}^{3}$, Numer. Math. 35 (1980), no. 3, 315–341. MR 592160, DOI 10.1007/BF01396415
- J. C. Adam, A. Gourdin Serveniere, J.-C. Nédélec, and P.-A. Raviart, Study of an implicit scheme for integrating Maxwell’s equations, Comput. Methods Appl. Mech. Engrg. 22 (1980), no. 3, 327–346. MR 579675, DOI 10.1016/0045-7825(80)90004-3
- J.-C. Nédélec, Éléments finis mixtes incompressibles pour l’équation de Stokes dans $\textbf {R}^{3}$, Numer. Math. 39 (1982), no. 1, 97–112 (French, with English summary). MR 664539, DOI 10.1007/BF01399314
- Serge Nicaise and Anna-Margarete Sändig, General interface problems. I, II, Math. Methods Appl. Sci. 17 (1994), no. 6, 395–429, 431–450. MR 1274152, DOI 10.1002/mma.1670170602
- A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486, DOI 10.1007/978-1-4612-5561-1
- P.-A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975) Lecture Notes in Math., Vol. 606, Springer, Berlin-New York, 1977, pp. 292–315. MR 483555
- Kôsaku Yosida, Functional analysis, 4th ed., Die Grundlehren der mathematischen Wissenschaften, Band 123, Springer-Verlag, New York-Heidelberg, 1974. MR 350358
- J. Zhao, Analysis of finite element approximation and iterative methods for time-dependent Maxwell problems, Ph.D. thesis, Texas A&M University, 2002.
Bibliographic Information
- Jun Zhao
- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843
- Address at time of publication: Institute for Mathematics and its Applications, University of Minnesota, 207 Church St. SE, Minneapolis, Minnesota 55455
- Email: zhao@ima.umn.edu
- Received by editor(s): August 3, 2002
- Received by editor(s) in revised form: December 17, 2002
- Published electronically: October 2, 2003
- © Copyright 2003 American Mathematical Society
- Journal: Math. Comp. 73 (2004), 1089-1105
- MSC (2000): Primary 65N30
- DOI: https://doi.org/10.1090/S0025-5718-03-01603-X
- MathSciNet review: 2047079