Lax theorem and finite volume schemes
HTML articles powered by AMS MathViewer
- by Bruno Despres;
- Math. Comp. 73 (2004), 1203-1234
- DOI: https://doi.org/10.1090/S0025-5718-03-01618-1
- Published electronically: November 5, 2003
- PDF | Request permission
Abstract:
This work addresses a theory of convergence for finite volume methods applied to linear equations. A non-consistent model problem posed in an abstract Banach space is proved to be convergent. Then various examples show that the functional framework is non-empty. Convergence with a rate $h^{\frac 12}$ of all TVD schemes for linear advection in 1D is an application of the general result. Using duality techniques and assuming enough regularity of the solution, convergence of the upwind finite volume scheme for linear advection on a 2D triangular mesh is proved in $L^\alpha$, $2\leq \alpha \leq +\infty$: provided the solution is in $W^{1,\infty }$, it proves a rate of convergence $h^{\frac 14 -\varepsilon }$ in $L^\infty$.References
- Milton Abramowitz and Irene A. Stegun (eds.), Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publications, Inc., New York, 1992. Reprint of the 1972 edition. MR 1225604
- Ramaz Botchorishvili, Benoit Perthame, and Alexis Vasseur, Equilibrium schemes for scalar conservation laws with stiff sources, Math. Comp. 72 (2003), no. 241, 131–157. MR 1933816, DOI 10.1090/S0025-5718-01-01371-0
- Haïm Brezis, Analyse fonctionnelle, Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree], Masson, Paris, 1983 (French). Théorie et applications. [Theory and applications]. MR 697382
- C. Chainais-Hillairet, First and second order schemes for a hyperbolic equation: convergence and error estimate, in Finite volume for complex applications: Problems and perspectives, Benkhaldoun and Vilsmeier editors, Hermes Paris (1997), 137–144.
- S. Champier, T. Gallouët, and R. Herbin, Convergence of an upstream finite volume scheme for a nonlinear hyperbolic equation on a triangular mesh, Numer. Math. 66 (1993), no. 2, 139–157. MR 1245008, DOI 10.1007/BF01385691
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 520174
- Bernardo Cockburn, Frédéric Coquel, and Philippe LeFloch, An error estimate for finite volume methods for multidimensional conservation laws, Math. Comp. 63 (1994), no. 207, 77–103. MR 1240657, DOI 10.1090/S0025-5718-1994-1240657-4
- Bernardo Cockburn, Devising discontinuous Galerkin methods for non-linear hyperbolic conservation laws, J. Comput. Appl. Math. 128 (2001), no. 1-2, 187–204. Numerical analysis 2000, Vol. VII, Partial differential equations. MR 1820874, DOI 10.1016/S0377-0427(00)00512-4
- Lawrence M. Graves, The Weierstrass condition for multiple integral variation problems, Duke Math. J. 5 (1939), 656–660. MR 99
- Bernardo Cockburn and Pierre-Alain Gremaud, A priori error estimates for numerical methods for scalar conservation laws. II. Flux-splitting monotone schemes on irregular Cartesian grids, Math. Comp. 66 (1997), no. 218, 547–572. MR 1408372, DOI 10.1090/S0025-5718-97-00838-7
- Yves Coudière, Thierry Gallouët, and Raphaèle Herbin, Discrete Sobolev inequalities and $L^p$ error estimates for finite volume solutions of convection diffusion equations, M2AN Math. Model. Numer. Anal. 35 (2001), no. 4, 767–778. MR 1863279, DOI 10.1051/m2an:2001135
- Yves Coudière, Jean-Paul Vila, and Philippe Villedieu, Convergence d’un schéma volumes finis explicite en temps pour les systèmes hyperboliques linéaires symétriques en domaines bornés, C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), no. 1, 95–100 (French, with English and French summaries). MR 1780225, DOI 10.1016/S0764-4442(00)00502-4
- Robert Dautray and Jacques-Louis Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. Tome 1, Collection du Commissariat à l’Énergie Atomique: Série Scientifique. [Collection of the Atomic Energy Commission: Science Series], Masson, Paris, 1984 (French). With the collaboration of Michel Artola, Marc Authier, Philippe Bénilan, Michel Cessenat, Jean-Michel Combes, André Gervat, Hélène Lanchon, Bertrand Mercier, Claude Wild and Claude Zuily. MR 792484
- Bruno Després and Frédéric Lagoutière, Contact discontinuity capturing schemes for linear advection and compressible gas dynamics, J. Sci. Comput. 16 (2001), no. 4, 479–524 (2002). MR 1881855, DOI 10.1023/A:1013298408777
- Bruno Després and Frédéric Lagoutière, Generalized Harten formalism and longitudinal variation diminishing schemes for linear advection on arbitrary grids, M2AN Math. Model. Numer. Anal. 35 (2001), no. 6, 1159–1183. MR 1873521, DOI 10.1051/m2an:2001152
- Ronald J. DiPerna, Measure-valued solutions to conservation laws, Arch. Rational Mech. Anal. 88 (1985), no. 3, 223–270. MR 775191, DOI 10.1007/BF00752112
- P. G. Ciarlet and J. L. Lions (eds.), Handbook of numerical analysis. Vol. VII, Handbook of Numerical Analysis, VII, North-Holland, Amsterdam, 2000. Solution of equations in $\Bbb R^n$. Part 3; Techniques of scientific computing. Part 3. MR 1804744
- Enrico Giusti, Minimal surfaces and functions of bounded variation, Monographs in Mathematics, vol. 80, Birkhäuser Verlag, Basel, 1984. MR 775682, DOI 10.1007/978-1-4684-9486-0
- C. Johnson and J. Pitkäranta, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation, Math. Comp. 46 (1986), no. 173, 1–26. MR 815828, DOI 10.1090/S0025-5718-1986-0815828-4
- Randall J. LeVeque, Numerical methods for conservation laws, 2nd ed., Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1992. MR 1153252, DOI 10.1007/978-3-0348-8629-1
- Randall J. Leveque, High-resolution conservative algorithms for advection in incompressible flow, SIAM J. Numer. Anal. 33 (1996), no. 2, 627–665. MR 1388492, DOI 10.1137/0733033
- P.-L. Lions, B. Perthame, and E. Tadmor, A kinetic formulation of multidimensional scalar conservation laws and related equations, J. Amer. Math. Soc. 7 (1994), no. 1, 169–191. MR 1201239, DOI 10.1090/S0894-0347-1994-1201239-3
- P. Lasaint and P.-A. Raviart, On a finite element method for solving the neutron transport equation, Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974) Academic Press, New York-London, 1974, pp. 89–123. MR 658142
- Thomas A. Manteuffel and Andrew B. White Jr., The numerical solution of second-order boundary value problems on nonuniform meshes, Math. Comp. 47 (1986), no. 176, 511–535, S53–S55. MR 856700, DOI 10.1090/S0025-5718-1986-0856700-3
- Thomas A. Manteuffel and Andrew B. White Jr., A calculus of difference schemes for the solution of boundary value problems on irregular meshes, SIAM J. Numer. Anal. 29 (1992), no. 5, 1321–1346. MR 1182733, DOI 10.1137/0729077
- Edwige Godlewski and Pierre-Arnaud Raviart, Numerical approximation of hyperbolic systems of conservation laws, Applied Mathematical Sciences, vol. 118, Springer-Verlag, New York, 1996. MR 1410987, DOI 10.1007/978-1-4612-0713-9
- P.-A. Raviart and J.-M. Thomas, Introduction à l’analyse numérique des équations aux dérivées partielles, Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree], Masson, Paris, 1983 (French). MR 773854
- Robert D. Richtmyer, Difference methods for initial-value problems, Interscience Tracts in Pure and Applied Mathematics, Tract 4, Interscience Publishers, Inc., New York, 1957. MR 93918
- P. L. Roe and D. Sidilkover, Optimum positive linear schemes for advection in two and three dimensions, SIAM J. Numer. Anal. 29 (1992), no. 6, 1542–1568. MR 1191135, DOI 10.1137/0729089
- A. Szepessy, Convergence of a streamline diffusion finite element method for scalar conservation laws with boundary conditions, RAIRO Modél. Math. Anal. Numér. 25 (1991), no. 6, 749–782 (English, with French summary). MR 1135992, DOI 10.1051/m2an/1991250607491
- B. Wendroff, Supraconvergence in two dimensions, Los Alamos National Laboratory report LA-UR-95-3068, Vieweg (1995).
- Josef Ballmann and Rolf Jeltsch (eds.), Nonlinear hyperbolic equations—theory, computation methods, and applications, Notes on Numerical Fluid Mechanics, vol. 24, Friedr. Vieweg & Sohn, Braunschweig, 1989. MR 991346, DOI 10.1007/978-3-322-87869-4
- Burton Wendroff and Andrew B. White Jr., A supraconvergent scheme for nonlinear hyperbolic systems, Comput. Math. Appl. 18 (1989), no. 8, 761–767. MR 1009864, DOI 10.1016/0898-1221(89)90232-0
Bibliographic Information
- Bruno Despres
- Affiliation: Commissariat à l’Energie Atomique, 91680, Bruyères le Chatel, France
- Address at time of publication: Laboratoire d’analyse numérique, 175 rue du Chevaleret, Université de Paris VI, 75013 Paris, France
- Email: despres@ann.jussieu.fr, bruno.despres@cea.fr
- Received by editor(s): November 28, 2001
- Received by editor(s) in revised form: January 10, 2003
- Published electronically: November 5, 2003
- © Copyright 2003 American Mathematical Society
- Journal: Math. Comp. 73 (2004), 1203-1234
- MSC (2000): Primary 65M12; Secondary 65M15, 65M60
- DOI: https://doi.org/10.1090/S0025-5718-03-01618-1
- MathSciNet review: 2047085