An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems
HTML articles powered by AMS MathViewer
- by Zhiming Chen and Jia Feng;
- Math. Comp. 73 (2004), 1167-1193
- DOI: https://doi.org/10.1090/S0025-5718-04-01634-5
- Published electronically: January 23, 2004
- PDF | Request permission
Abstract:
An efficient and reliable a posteriori error estimate is derived for linear parabolic equations which does not depend on any regularity assumption on the underlying elliptic operator. An adaptive algorithm with variable time-step sizes and space meshes is proposed and studied which, at each time step, delays the mesh coarsening until the final iteration of the adaptive procedure, allowing only mesh and time-step size refinements before. It is proved that at each time step the adaptive algorithm is able to reduce the error indicators (and thus the error) below any given tolerance within a finite number of iteration steps. The key ingredient in the analysis is a new coarsening strategy. Numerical results are presented to show the competitive behavior of the proposed adaptive algorithm.References
- Eberhard Bänsch, Local mesh refinement in $2$ and $3$ dimensions, Impact Comput. Sci. Engrg. 3 (1991), no. 3, 181–191. MR 1141298, DOI 10.1016/0899-8248(91)90006-G
- M. Bieterman and I. Babuška, The finite element method for parabolic equations. I. A posteriori error estimation, Numer. Math. 40 (1982), no. 3, 339–371. MR 695602, DOI 10.1007/BF01396451
- M. Bieterman and I. Babuška, The finite element method for parabolic equations. I. A posteriori error estimation, Numer. Math. 40 (1982), no. 3, 339–371. MR 695602, DOI 10.1007/BF01396451
- I. Babuška and W. C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15 (1978), no. 4, 736–754. MR 483395, DOI 10.1137/0715049
- Zhiming Chen and Shibin Dai, Adaptive Galerkin methods with error control for a dynamical Ginzburg-Landau model in superconductivity, SIAM J. Numer. Anal. 38 (2001), no. 6, 1961–1985. MR 1856238, DOI 10.1137/S0036142998349102
- Z. Chen and S. Dai, On the efficiency of adaptive finite element methods for elliptic problems with discontinuous coefficients, SIAM J. Sci. Comput. 24 (2002), 443-462.
- Zhiming Chen, Ricardo H. Nochetto, and Alfred Schmidt, A characteristic Galerkin method with adaptive error control for the continuous casting problem, Comput. Methods Appl. Mech. Engrg. 189 (2000), no. 1, 249–276. MR 1779683, DOI 10.1016/S0045-7825(99)00295-9
- Zhiming Chen, Ricardo H. Nochetto, and Alfred Schmidt, Error control and adaptivity for a phase relaxation model, M2AN Math. Model. Numer. Anal. 34 (2000), no. 4, 775–797. MR 1784485, DOI 10.1051/m2an:2000103
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 520174
- Ph. Clément, Approximation by finite element functions using local regularization, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. 9 (1975), no. no. , no. R-2, 77–84 (English, with French summary). MR 400739
- Willy Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal. 33 (1996), no. 3, 1106–1124. MR 1393904, DOI 10.1137/0733054
- Kenneth Eriksson and Claes Johnson, Adaptive finite element methods for parabolic problems. I. A linear model problem, SIAM J. Numer. Anal. 28 (1991), no. 1, 43–77. MR 1083324, DOI 10.1137/0728003
- Kenneth Eriksson and Claes Johnson, Adaptive finite element methods for parabolic problems. IV. Nonlinear problems, SIAM J. Numer. Anal. 32 (1995), no. 6, 1729–1749. MR 1360457, DOI 10.1137/0732078
- Peter K. Moore, A posteriori error estimation with finite element semi- and fully discrete methods for nonlinear parabolic equations in one space dimension, SIAM J. Numer. Anal. 31 (1994), no. 1, 149–169. MR 1259970, DOI 10.1137/0731008
- Pedro Morin, Ricardo H. Nochetto, and Kunibert G. Siebert, Data oscillation and convergence of adaptive FEM, SIAM J. Numer. Anal. 38 (2000), no. 2, 466–488. MR 1770058, DOI 10.1137/S0036142999360044
- R. H. Nochetto, A. Schmidt, and C. Verdi, A posteriori error estimation and adaptivity for degenerate parabolic problems, Math. Comp. 69 (2000), no. 229, 1–24. MR 1648399, DOI 10.1090/S0025-5718-99-01097-2
- Marco Picasso, Adaptive finite elements for a linear parabolic problem, Comput. Methods Appl. Mech. Engrg. 167 (1998), no. 3-4, 223–237. MR 1673951, DOI 10.1016/S0045-7825(98)00121-2
- A. Schmidt and K.G. Siebert, ALBERT: An adaptive hierarchical finite element toolbox, IAM, University of Freiburg, 2000. http://www.mathematik.uni-freiburg.de/IAM/ Research/projectsdz/albert.
- R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh Refinement Techniques, Teubner (1996).
- R. Verfürth, A posteriori error estimates for nonlinear problems: $L^r(0,T;W^{1,\rho }(\Omega ))$-error estimates for finite element discretizations of parabolic equations, Numer. Methods Partial Differential Equations 14 (1998), no. 4, 487–518. MR 1627578, DOI 10.1002/(SICI)1098-2426(199807)14:4<487::AID-NUM4>3.0.CO;2-G
Bibliographic Information
- Zhiming Chen
- Affiliation: LSEC, Institute of Computational Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, Peoples Republic of China
- Email: zmchen@lsec.cc.ac.cn
- Jia Feng
- Affiliation: Institute of Computational Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100080, Peoples Republic of China
- Email: fjia@lsec.cc.ac.cn
- Received by editor(s): September 28, 2001
- Received by editor(s) in revised form: January 12, 2003
- Published electronically: January 23, 2004
- Additional Notes: The first author was supported in part by China NSF under the grant 10025102 and by China MOS under the grant G1999032802
- © Copyright 2004 American Mathematical Society
- Journal: Math. Comp. 73 (2004), 1167-1193
- MSC (2000): Primary 65N15, 65N30, 65N50
- DOI: https://doi.org/10.1090/S0025-5718-04-01634-5
- MathSciNet review: 2047083