Spectral-fractional step Runge–Kutta discretizations for initial boundary value problems with time dependent boundary conditions
HTML articles powered by AMS MathViewer
- by I. Alonso-Mallo, B. Cano and J. C. Jorge;
- Math. Comp. 73 (2004), 1801-1825
- DOI: https://doi.org/10.1090/S0025-5718-04-01660-6
- Published electronically: April 20, 2004
- PDF | Request permission
Abstract:
In this paper we develop a technique for avoiding the order reduction caused by nonconstant boundary conditions in the methods called splitting, alternating direction or, more generally, fractional step methods. Such methods can be viewed as the combination of a semidiscrete in time procedure with a special type of additive Runge–Kutta method, which is called the fractional step Runge–Kutta method, and a standard space discretization which can be of type finite differences, finite elements or spectral methods among others. Spectral methods have been chosen here to complete the analysis of convergence of a totally discrete scheme of this type of improved fractionary steps. The numerical experiences performed also show the increase of accuracy that this technique provides.References
- Isaías Alonso-Mallo, Rational methods with optimal order of convergence for partial differential equations, Appl. Numer. Math. 35 (2000), no. 4, 265–292. MR 1797608, DOI 10.1016/S0168-9274(99)00144-0
- Isaías Alonso-Mallo, Runge-Kutta methods without order reduction for linear initial boundary value problems, Numer. Math. 91 (2002), no. 4, 577–603. MR 1912908, DOI 10.1007/s002110100332
- I. Alonso-Mallo and B. Cano, Spectral/Rosenbrock discretizations without order reduction for linear parabolic problems, Appl. Numer. Math. 41 (2002), no. 2, 247–268. MR 1897008, DOI 10.1016/S0168-9274(01)00101-5
- I. Alonso-Mallo and C. Palencia, Optimal orders of convergence for Runge-Kutta methods and linear, initial boundary value problems, Appl. Numer. Math. 44 (2003), no. 1-2, 1–19. MR 1951284, DOI 10.1016/S0168-9274(02)00110-1
- Christine Bernardi and Yvon Maday, Approximations spectrales de problèmes aux limites elliptiques, Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 10, Springer-Verlag, Paris, 1992 (French, with French summary). MR 1208043
- Philip Brenner, Michel Crouzeix, and Vidar Thomée, Single-step methods for inhomogeneous linear differential equations in Banach space, RAIRO Anal. Numér. 16 (1982), no. 1, 5–26 (English, with French summary). MR 648742, DOI 10.1051/m2an/1982160100051
- B. Bujanda, Métodos Runge–Kutta de Pasos Fraccionarios de orden alto para la resolución de problemas evolutivos de convección-difusión-reacción, Tesis, Universidad Pública de Navarra, 1999.
- B. Bujanda and J. C. Jorge, Stability results for fractional step discretizations of time dependent coefficient evolutionary problems, Appl. Numer. Math. 38 (2001), no. 1-2, 69–86. MR 1834768, DOI 10.1016/S0168-9274(00)00063-5
- A. A. Samarskiĭ, Petr N. Vabishchevich, and Lubin G. Vulkov (eds.), Finite difference methods: theory and applications, Nova Science Publishers, Inc., Commack, NY, 1999. MR 1714030
- M. P. Calvo and C. Palencia, Avoiding the order reduction of Runge-Kutta methods for linear initial boundary value problems, Math. Comp. 71 (2002), no. 240, 1529–1543. MR 1933043, DOI 10.1090/S0025-5718-01-01362-X
- C. Clavero, J. C. Jorge, F. Lisbona, and G. I. Shishkin, A fractional step method on a special mesh for the resolution of multidimensional evolutionary convection-diffusion problems, Appl. Numer. Math. 27 (1998), no. 3, 211–231. MR 1634346, DOI 10.1016/S0168-9274(98)00014-2
- C. Clavero, J. C. Jorge, F. Lisbona, and G. I. Shishkin, An alternating direction scheme on a nonuniform mesh for reaction-diffusion parabolic problems, IMA J. Numer. Anal. 20 (2000), no. 2, 263–280. MR 1752265, DOI 10.1093/imanum/20.2.263
- G. J. Cooper and A. Sayfy, Additive Runge-Kutta methods for stiff ordinary differential equations, Math. Comp. 40 (1983), no. 161, 207–218. MR 679441, DOI 10.1090/S0025-5718-1983-0679441-1
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- J. Jr. Douglas and D. Peaceman, Numerical solution of two-dimensional heat flow problems, J. American Institute of Chemical Engineering Journal, 1 (1955), 505-512.
- E. G. D’yaconov, Difference schemes with split operators for multidimensional unsteady problems, U.S.S.R. Comp. Math., 3 (1963), no. 4, 581–607.
- G. Fairweather and A. R. Mitchell, A new computational procedure for $\textrm {A.D.I.}$ methods, SIAM J. Numer. Anal. 4 (1967), 163–170. MR 218027, DOI 10.1137/0704016
- J. C. Jorge, Los métodos de pasos fraccionarios para la integración de problemas parabólicos lineales: formulación general, análisis de la convergencia y diseño de nuevos métodos, Tesis, Universidad de Zaragoza, 1992.
- J. C. Jorge and F. Lisbona, Contractivity results for alternating direction schemes in Hilbert spaces, Appl. Numer. Math. 15 (1994), no. 1, 65–75. MR 1290598, DOI 10.1016/0168-9274(94)00009-3
- Stephen L. Keeling, Galerkin/Runge-Kutta discretizations for parabolic equations with time-dependent coefficients, Math. Comp. 52 (1989), no. 186, 561–586. MR 958873, DOI 10.1090/S0025-5718-1989-0958873-3
- P. G. Ciarlet and J.-L. Lions (eds.), Handbook of numerical analysis. Vol. I, Handbook of Numerical Analysis, I, North-Holland, Amsterdam, 1990. MR 1039323
- A. Ostermann and M. Roche, Runge-Kutta methods for partial differential equations and fractional orders of convergence, Math. Comp. 59 (1992), no. 200, 403–420. MR 1142285, DOI 10.1090/S0025-5718-1992-1142285-6
- C. Palencia and I. Alonso Mallo, Abstract initial-boundary value problems, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994), no. 5, 879–908. MR 1303759, DOI 10.1017/S0308210500022393
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- Anthony Ralston, A first course in numerical analysis, McGraw-Hill Book Co., New York-Toronto-London, 1965. MR 191070
- J. M. Sanz-Serna, J. G. Verwer, and W. H. Hundsdorfer, Convergence and order reduction of Runge-Kutta schemes applied to evolutionary problems in partial differential equations, Numer. Math. 50 (1987), no. 4, 405–418. MR 875165, DOI 10.1007/BF01396661
- N. N. Yanenko, The method of fractional steps. The solution of problems of mathematical physics in several variables, Springer-Verlag, New York-Heidelberg, 1971. Translated from the Russian by T. Cheron. English translation edited by M. Holt. MR 307493
Bibliographic Information
- I. Alonso-Mallo
- Affiliation: Departamento de Matemática Aplicada y Computación, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid, Spain
- Email: isaias@mac.uva.es
- B. Cano
- Affiliation: Departamento de Matemática Aplicada y Computación, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid, Spain
- Email: bego@mac.uva.es
- J. C. Jorge
- Affiliation: Departamento de Matemática e Informática, Universidad Pública de Navarra, 31006 Pamplona, Spain
- Email: jcjorge@unavarra.es
- Received by editor(s): November 20, 2001
- Received by editor(s) in revised form: December 30, 2002
- Published electronically: April 20, 2004
- Additional Notes: The first and second authors have obtained financial support from MCYT BFM 2001-2013 and JCYL VA025/01.
The third author has obtained financial support from the projects DGES PB97-1013, BFM2000-0803, a project of Gobierno de Navarra and a project of Universidad de La Rioja. - © Copyright 2004 American Mathematical Society
- Journal: Math. Comp. 73 (2004), 1801-1825
- MSC (2000): Primary 65M20, 65M12; Secondary 65M60, 65J10
- DOI: https://doi.org/10.1090/S0025-5718-04-01660-6
- MathSciNet review: 2059737