Canonical vector heights on K3 surfaces with Picard number three— An argument for nonexistence
HTML articles powered by AMS MathViewer
- by Arthur Baragar;
- Math. Comp. 73 (2004), 2019-2025
- DOI: https://doi.org/10.1090/S0025-5718-04-01661-8
- Published electronically: May 7, 2004
- PDF | Request permission
Abstract:
In this paper, we investigate a K3 surface with Picard number three and present evidence that strongly suggests a canonical vector height cannot exist on this surface.References
- A. Baragar, Canonical vector heights on algebraic K3 surfaces with Picard number two, Canad. Math. Bull., 46 (2003) 495–508.
- A. Baragar, Rational points on $K3$ surfaces in $\textbf {P}^1\times \textbf {P}^1\times \textbf {P}^1$, Math. Ann. 305 (1996), no. 3, 541–558. MR 1397435, DOI 10.1007/BF01444236
- Hervé Billard, Propriétés arithmétiques d’une famille de surfaces $K3$, Compositio Math. 108 (1997), no. 3, 247–275 (French, with English and French summaries). MR 1473849, DOI 10.1023/A:1000128300511
- Gregory S. Call and Joseph H. Silverman, Computing the canonical height on $K3$ surfaces, Math. Comp. 65 (1996), no. 213, 259–290. MR 1322885, DOI 10.1090/S0025-5718-96-00680-1
- Joseph H. Silverman, Rational points on $K3$ surfaces: a new canonical height, Invent. Math. 105 (1991), no. 2, 347–373. MR 1115546, DOI 10.1007/BF01232270
- Lan Wang, Rational points and canonical heights on $K3$-surfaces in $\textbf {P}^1\times \textbf {P}^1\times \textbf {P}^1$, Recent developments in the inverse Galois problem (Seattle, WA, 1993) Contemp. Math., vol. 186, Amer. Math. Soc., Providence, RI, 1995, pp. 273–289. MR 1352278, DOI 10.1090/conm/186/02187
- Joachim Wehler, $K3$-surfaces with Picard number $2$, Arch. Math. (Basel) 50 (1988), no. 1, 73–82. MR 925498, DOI 10.1007/BF01313498
Bibliographic Information
- Arthur Baragar
- Affiliation: Department of Mathematical Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada 89154-4020
- Email: baragar@unlv.nevada.edu
- Received by editor(s): February 14, 2003
- Published electronically: May 7, 2004
- © Copyright 2004 American Mathematical Society
- Journal: Math. Comp. 73 (2004), 2019-2025
- MSC (2000): Primary 14G40, 11G50, 14J28
- DOI: https://doi.org/10.1090/S0025-5718-04-01661-8
- MathSciNet review: 2059748