Convergence of a continuous Galerkin method with mesh modification for nonlinear wave equations
HTML articles powered by AMS MathViewer
- by Ohannes Karakashian and Charalambos Makridakis;
- Math. Comp. 74 (2005), 85-102
- DOI: https://doi.org/10.1090/S0025-5718-04-01654-0
- Published electronically: April 20, 2004
- PDF | Request permission
Abstract:
We consider space-time continuous Galerkin methods with mesh modification in time for semilinear second order hyperbolic equations. We show a priori estimates in the energy norm without mesh conditions. Under reasonable assumptions on the choice of the spatial mesh in each time step we show optimal order convergence rates. Estimates of the jump in the Riesz projection in two successive time steps are also derived.References
- A. K. Aziz and Peter Monk, Continuous finite elements in space and time for the heat equation, Math. Comp. 52 (1989), no. 186, 255–274. MR 983310, DOI 10.1090/S0025-5718-1989-0983310-2
- I. Babuška and J. Osborn, Analysis of finite element methods for second order boundary value problems using mesh dependent norms, Numer. Math. 34 (1980), no. 1, 41–62. MR 560793, DOI 10.1007/BF01463997
- Garth A. Baker and James H. Bramble, Semidiscrete and single step fully discrete approximations for second order hyperbolic equations, RAIRO Anal. Numér. 13 (1979), no. 2, 75–100 (English, with French summary). MR 533876, DOI 10.1051/m2an/1979130200751
- L. Bales and I. Lasiecka, Continuous finite elements in space and time for the nonhomogeneous wave equation, Comput. Math. Appl. 27 (1994), no. 3, 91–102. MR 1255008, DOI 10.1016/0898-1221(94)90048-5
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 1994. MR 1278258, DOI 10.1007/978-1-4757-4338-8
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 520174
- Philip J. Davis and Philip Rabinowitz, Methods of numerical integration, Computer Science and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 448814
- Todd Dupont, Mesh modification for evolution equations, Math. Comp. 39 (1982), no. 159, 85–107. MR 658215, DOI 10.1090/S0025-5718-1982-0658215-0
- Kenneth Eriksson, An adaptive finite element method with efficient maximum norm error control for elliptic problems, Math. Models Methods Appl. Sci. 4 (1994), no. 3, 313–329. MR 1282238, DOI 10.1142/S0218202594000194
- Kenneth Eriksson and Claes Johnson, Adaptive finite element methods for parabolic problems. II. Optimal error estimates in $L_\infty L_2$ and $L_\infty L_\infty$, SIAM J. Numer. Anal. 32 (1995), no. 3, 706–740. MR 1335652, DOI 10.1137/0732033
- Donald A. French and Todd E. Peterson, A continuous space-time finite element method for the wave equation, Math. Comp. 65 (1996), no. 214, 491–506. MR 1325867, DOI 10.1090/S0025-5718-96-00685-0
- Donald A. French, A space-time finite element method for the wave equation, Comput. Methods Appl. Mech. Engrg. 107 (1993), no. 1-2, 145–157. MR 1241481, DOI 10.1016/0045-7825(93)90172-T
- Thomas J. R. Hughes and Gregory M. Hulbert, Space-time finite element methods for elastodynamics: formulations and error estimates, Comput. Methods Appl. Mech. Engrg. 66 (1988), no. 3, 339–363. MR 928689, DOI 10.1016/0045-7825(88)90006-0
- Claes Johnson, Discontinuous Galerkin finite element methods for second order hyperbolic problems, Comput. Methods Appl. Mech. Engrg. 107 (1993), no. 1-2, 117–129. MR 1241479, DOI 10.1016/0045-7825(93)90170-3
- Ohannes Karakashian and Charalambos Makridakis, A space-time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method, Math. Comp. 67 (1998), no. 222, 479–499. MR 1459390, DOI 10.1090/S0025-5718-98-00946-6
- Ohannes Karakashian and Charalambos Makridakis, A space-time finite element method for the nonlinear Schrödinger equation: the continuous Galerkin method, SIAM J. Numer. Anal. 36 (1999), no. 6, 1779–1807. MR 1712169, DOI 10.1137/S0036142997330111
- Charalambos G. Makridakis, Finite element approximations of nonlinear elastic waves, Math. Comp. 61 (1993), no. 204, 569–594. MR 1195426, DOI 10.1090/S0025-5718-1993-1195426-X
- A. H. Schatz and L. B. Wahlbin, Interior maximum-norm estimates for finite element methods. II, Math. Comp. 64 (1995), no. 211, 907–928. MR 1297478, DOI 10.1090/S0025-5718-1995-1297478-7
- Vidar Thomée, Galerkin finite element methods for parabolic problems, Lecture Notes in Mathematics, vol. 1054, Springer-Verlag, Berlin, 1984. MR 744045
- Dao Qi Yang, Grid modification for second-order hyperbolic problems, Math. Comp. 64 (1995), no. 212, 1495–1509. MR 1308463, DOI 10.1090/S0025-5718-1995-1308463-0
Bibliographic Information
- Ohannes Karakashian
- Affiliation: Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37966
- Email: ohannes@math.utk.edu
- Charalambos Makridakis
- Affiliation: Department of Applied Mathematics, University of Crete, 714 09 Heraklion, Crete, Greece; IACM-FORTH, 711 10 Heraklion, Crete, Greece
- MR Author ID: 289627
- Email: makr@tem.uoc.gr
- Received by editor(s): November 20, 2001
- Received by editor(s) in revised form: May 7, 2003
- Published electronically: April 20, 2004
- © Copyright 2004 American Mathematical Society
- Journal: Math. Comp. 74 (2005), 85-102
- MSC (2000): Primary 65M60, 65M12
- DOI: https://doi.org/10.1090/S0025-5718-04-01654-0
- MathSciNet review: 2085403