Strictly positive definite functions on the unit circle
HTML articles powered by AMS MathViewer
- by Xingping Sun;
- Math. Comp. 74 (2005), 709-721
- DOI: https://doi.org/10.1090/S0025-5718-04-01668-0
- Published electronically: May 11, 2004
- PDF | Request permission
Abstract:
We study strictly positive definite functions on the unit circle in the Euclidean space of dimension two. We develop several conditions pertaining to the determination of such functions. The major result is obtained by considering the set of real numbers as a vector space over the field of rational numbers and then applying the Kronecker approximation theorem and Weyl’s criterion on equidistributions.References
- Tom M. Apostol, Modular functions and Dirichlet series in number theory, 2nd ed., Graduate Texts in Mathematics, vol. 41, Springer-Verlag, New York, 1990. MR 1027834, DOI 10.1007/978-1-4612-0999-7
- D. Chen, V. A. Menegatto, and X. Sun, A necessary and sufficient condition for strictly positive definite functions on spheres, Proc. Amer. Math. Soc. 131 (2003), 2733–2740.
- V. A. Menegatto, Strictly positive definite functions on spheres, Ph. D. Dissertation, University of Texas-Austin, 1992.
- G. Pólya and G. Szegő, Problems and theorems in analysis. Vol. I: Series, integral calculus, theory of functions, Die Grundlehren der mathematischen Wissenschaften, Band 193, Springer-Verlag, New York-Berlin, 1972. Translated from the German by D. Aeppli. MR 344042
- Amos Ron and Xingping Sun, Strictly positive definite functions on spheres in Euclidean spaces, Math. Comp. 65 (1996), no. 216, 1513–1530. MR 1370856, DOI 10.1090/S0025-5718-96-00780-6
- A. Ron and X. Sun, Strictly positive definite functions on spheres, CMS TR 94-6, University of Wisconsin-Madison, February 1994.
- Sergio Sispanov, Generalización del teorema de Laguerre, Bol. Mat. 12 (1939), 113–117 (Spanish). MR 3
- T. Venkatarayudu, The $7$-$15$ problem, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 531. MR 1, DOI 10.1090/gsm/058
- H. Weyl, Über die Gleichverteilung von Zahlen modulo Eins, Math. Ann. 77 (1916), 313-352.
- Yuan Xu and E. W. Cheney, Strictly positive definite functions on spheres, Proc. Amer. Math. Soc. 116 (1992), no. 4, 977–981. MR 1096214, DOI 10.1090/S0002-9939-1992-1096214-6
Bibliographic Information
- Xingping Sun
- Affiliation: Department of Mathematics, Southwest Missouri State University, Springfield, Missouri 65804
- Email: xis280f@smsu.edu
- Received by editor(s): December 9, 2002
- Received by editor(s) in revised form: September 29, 2003
- Published electronically: May 11, 2004
- © Copyright 2004 American Mathematical Society
- Journal: Math. Comp. 74 (2005), 709-721
- MSC (2000): Primary 41A05, 42A15; Secondary 33C45, 33C55
- DOI: https://doi.org/10.1090/S0025-5718-04-01668-0
- MathSciNet review: 2114644