On variational approximations in quantum molecular dynamics
HTML articles powered by AMS MathViewer
- by Christian Lubich;
- Math. Comp. 74 (2005), 765-779
- DOI: https://doi.org/10.1090/S0025-5718-04-01685-0
- Published electronically: May 25, 2004
- PDF | Request permission
Abstract:
The Dirac-Frenkel-McLachlan variational principle is the basic tool for obtaining computationally accessible approximations in quantum molecular dynamics. It determines equations of motion for an approximate time-dependent wave function on an approximation manifold of reduced dimension. This paper gives a near-optimality result for variational approximations. It bounds the error in terms of the distance of the exact wave function to the approximation manifold and identifies the parameters that control the deviation of the variational approximation from the best approximation on the manifold.References
- M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987.
- M. Baer, G.D. Billing, eds., The Role of Degenerate States in Chemistry, Advances in Chemical Physics, Vol. 124, Wiley, 2002.
- M.H. Beck, A. Jäckle, G.A. Worth, H.-D. Meyer, The multiconfiguration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propagating wavepackets, Phys. Reports 324 (2000), 1–105.
- G.D. Billing, The Quantum Classical Theory, Oxford Univ. Press, 2003.
- P. G. Ciarlet and J.-L. Lions (eds.), Handbook of numerical analysis. Vol. II, Handbook of Numerical Analysis, II, North-Holland, Amsterdam, 1991. Finite element methods. Part 1. MR 1115235
- P.A.M. Dirac, Note on exchange phenomena in the Thomas atom, Proc. Cambridge Phil. Soc. 26 (1930), 376–385.
- J. Frenkel, Wave Mechanics, Advanced General Theory, Clarendon Press, Oxford, 1934.
- Eric J. Heller, Time dependent variational approach to semiclassical dynamics, J. Chem. Phys. 64 (1976), no. 1, 63–73. MR 446212, DOI 10.1063/1.431911
- Tosio Kato, Perturbation theory for linear operators, 2nd ed., Grundlehren der Mathematischen Wissenschaften, Band 132, Springer-Verlag, Berlin-New York, 1976. MR 407617
- T. Klett, Das Multikonfigurations-Hartree-Verfahren in der Quantendynamik, Diplomarbeit, Fakultät für Mathematik und Physik, Univ. Tübingen, 2004.
- André Martinez, An introduction to semiclassical and microlocal analysis, Universitext, Springer-Verlag, New York, 2002. MR 1872698, DOI 10.1007/978-1-4757-4495-8
- A. D. McLachlan, A variational solution of the time-dependent Schrödinger equation, Molecular Phys. 8 (1964), 39–44. MR 180123, DOI 10.1080/00268976400100041
- Albert Messiah, Quantum mechanics. Vol. I, North-Holland Publishing Co., Amsterdam; Interscience Publishers Inc., New York, 1961. Translated from the French by G. M. Temmer. MR 129790
- A. Raab, On the Dirac-Frenkel/McLachlan variational principle, Chem. Phys. Lett. 319 (2000), 674–678.
- S. Teufel, Adiabatic Perturbation Theory in Quantum Dynamics, Lecture Notes in Mathematics 1821, Springer, Berlin, 2003.
- H. Yserentant, On the regularity of the Schrödinger equation in Hilbert spaces of mixed derivatives, Numer. Math., 2004 (to appear).
Bibliographic Information
- Christian Lubich
- Affiliation: Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany
- MR Author ID: 116445
- Email: lubich@na.uni-tuebingen.de
- Received by editor(s): September 8, 2003
- Published electronically: May 25, 2004
- © Copyright 2004 American Mathematical Society
- Journal: Math. Comp. 74 (2005), 765-779
- MSC (2000): Primary 65M15, 81Q05; Secondary 35Q40
- DOI: https://doi.org/10.1090/S0025-5718-04-01685-0
- MathSciNet review: 2114647