Tame kernels of cubic cyclic fields
HTML articles powered by AMS MathViewer
- by Jerzy Browkin;
- Math. Comp. 74 (2005), 967-999
- DOI: https://doi.org/10.1090/S0025-5718-04-01726-0
- Published electronically: October 27, 2004
- PDF | Request permission
Abstract:
There are many results describing the structure of the tame kernels of algebraic number fields and relating them to the class numbers of appropriate fields. In the present paper we give some explicit results on tame kernels of cubic cyclic fields. Table 1 collects the results of computations of the structure of the tame kernel for all cubic fields with only one ramified prime $p,$ $7\le p<5,000.$ In particular, we investigate the structure of the 7-primary and 13-primary parts of the tame kernels. The theoretical tools we develop, based on reflection theorems and singular primary units, enable the determination of the structure even of 7-primary and 13-primary parts of the tame kernels for all fields as above. The results are given in Tables 2 and 3.References
- Jerzy Browkin, The functor $K_{2}$ for the ring of integers of a number field, Universal algebra and applications (Warsaw, 1978) Banach Center Publ., vol. 9, PWN, Warsaw, 1982, pp. 187–195. MR 738813
- Jerzy Browkin, On the $p$-rank of the tame kernel of algebraic number fields, J. Reine Angew. Math. 432 (1992), 135–149. MR 1184763, DOI 10.1515/crll.1992.432.135
- P. E. Conner and Jurgen Hurrelbrink, On the 4-rank of the tame kernel $K_2(\scr O)$ in positive definite terms, J. Number Theory 88 (2001), no. 2, 263–282. MR 1832007, DOI 10.1006/jnth.2000.2626
- M. Geijsberts, The tame kernel, computational aspects, Ph.D. Thesis, Catholic University of Nijmegen (1991).
- Georges Gras, Remarks on $K_2$ of number fields, J. Number Theory 23 (1986), no. 3, 322–335. MR 846962, DOI 10.1016/0022-314X(86)90077-6
- Helmut Hasse, Arithmetische Bestimmung von Grundeinheit und Klassenzahl in zyklischen kubischen und biquadratischen Zahlkörpern, Abh. Deutsch. Akad. Wiss. Berlin. Math.-Nat. Kl. 1948 (1948), no. 2, 95 pp. (1950) (German). MR 33863
- Jürgen Hurrelbrink and Manfred Kolster, Tame kernels under relative quadratic extensions and Hilbert symbols, J. Reine Angew. Math. 499 (1998), 145–188. MR 1631116
- Christian Pommerenke, On automorphic functions, E. B. Christoffel (Aachen/Monschau, 1979) Birkhäuser Verlag, Basel-Boston, Mass., 1981, pp. 306–313. MR 661074
- Frans Keune, On the structure of the $K_2$ of the ring of integers in a number field, Proceedings of Research Symposium on $K$-Theory and its Applications (Ibadan, 1987), 1989, pp. 625–645. MR 999397, DOI 10.1007/BF00535049
- Hyun Kwang Kim and Jung Soo Kim, Evaluation of zeta function of the simplest cubic field at negative odd integers, Math. Comp. 71 (2002), no. 239, 1243–1262. MR 1898754, DOI 10.1090/S0025-5718-02-01395-9
- Manfred Kolster, The structure of the $2$-Sylow-subgroup of $K_2({\mathfrak {o}})$. I, Comment. Math. Helv. 61 (1986), no. 3, 376–388. MR 860130, DOI 10.1007/BF02621923
- Manfred Kolster, The structure of the $2$-Sylow subgroup of $K_2({\mathfrak {o}})$. II, $K$-Theory 1 (1987), no. 5, 467–479. MR 934452, DOI 10.1007/BF00536979
- Manfred Kolster, A relation between the $2$-primary parts of the main conjecture and the Birch-Tate-conjecture, Canad. Math. Bull. 32 (1989), no. 2, 248–251. MR 1006753, DOI 10.4153/CMB-1989-036-8
- Manfred Kolster, $K_2$ of rings of algebraic integers, J. Number Theory 42 (1992), no. 1, 103–122. MR 1176424, DOI 10.1016/0022-314X(92)90112-3
- M. Kolster and A. Movahhedi, Galois co-descent for étale wild kernels and capitulation, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 1, 35–65 (English, with English and French summaries). MR 1762337, DOI 10.5802/aif.1746
- F. Marko, On the existence of $p$-units and Minkowski units in totally real cyclic fields, Abh. Math. Sem. Univ. Hamburg 66 (1996), 89–111. MR 1418221, DOI 10.1007/BF02940796
- B. Mazur and A. Wiles, Class fields of abelian extensions of $\textbf {Q}$, Invent. Math. 76 (1984), no. 2, 179–330. MR 742853, DOI 10.1007/BF01388599
- Hou Rong Qin, Computation of $K_2\mathbf Z[\sqrt {-6}]$, J. Pure Appl. Algebra 96 (1994), no. 2, 133–146. MR 1303542, DOI 10.1016/0022-4049(94)90124-4
- Hou Rong Qin, The $2$-Sylow subgroups of the tame kernel of imaginary quadratic fields, Acta Arith. 69 (1995), no. 2, 153–169. MR 1316704, DOI 10.4064/aa-69-2-153-169
- Hou Rong Qin, The $4$-rank of $K_2O_F$ for real quadratic fields $F$, Acta Arith. 72 (1995), no. 4, 323–333. MR 1348200, DOI 10.4064/aa-72-4-323-333
- Hourong Qin, Tame kernels and Tate kernels of quadratic number fields, J. Reine Angew. Math. 530 (2001), 105–144. MR 1807269, DOI 10.1515/crll.2001.001
- Joseph H. Silverman and John Tate, Rational points on elliptic curves, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1992. MR 1171452, DOI 10.1007/978-1-4757-4252-7
- John Tate, Relations between $K_{2}$ and Galois cohomology, Invent. Math. 36 (1976), 257–274. MR 429837, DOI 10.1007/BF01390012
- Lawrence C. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1982. MR 718674, DOI 10.1007/978-1-4684-0133-2
- A. Wiles, The Iwasawa conjecture for totally real fields, Ann. of Math. (2) 131 (1990), no. 3, 493–540. MR 1053488, DOI 10.2307/1971468
Bibliographic Information
- Jerzy Browkin
- Affiliation: Institute of Mathematics, University of Warsaw, ul. Banacha 2, PL–02–097 Warsaw, Poland
- Email: bro@mimuw.edu.pl
- Received by editor(s): October 17, 2002
- Received by editor(s) in revised form: May 4, 2004
- Published electronically: October 27, 2004
- © Copyright 2004 American Mathematical Society
- Journal: Math. Comp. 74 (2005), 967-999
- MSC (2000): Primary 11R70; Secondary 11R16, 11Y40, 19--04, 19C99
- DOI: https://doi.org/10.1090/S0025-5718-04-01726-0
- MathSciNet review: 2114659