Pointwise error estimates of the local discontinuous Galerkin method for a second order elliptic problem
HTML articles powered by AMS MathViewer
- by Hongsen Chen;
- Math. Comp. 74 (2005), 1097-1116
- DOI: https://doi.org/10.1090/S0025-5718-04-01700-4
- Published electronically: July 16, 2004
- PDF | Request permission
Abstract:
In this paper we derive some pointwise error estimates for the local discontinuous Galerkin (LDG) method for solving second-order elliptic problems in $R^N$ ($N\geq 2$). Our results show that the pointwise errors of both the vector and scalar approximations of the LDG method are of the same order as those obtained in the $L^2$ norm except for a logarithmic factor when the piecewise linear functions are used in the finite element spaces. Moreover, due to the weighted norms in the bounds, these pointwise error estimates indicate that when at least piecewise quadratic polynomials are used in the finite element spaces, the errors at any point $z$ depend very weakly on the true solution and its derivatives in the regions far away from $z$. These localized error estimates are similar to those obtained for the standard conforming finite element method.References
- S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959), 623–727. MR 125307, DOI 10.1002/cpa.3160120405
- Douglas N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982), no. 4, 742–760. MR 664882, DOI 10.1137/0719052
- Douglas N. Arnold, Franco Brezzi, Bernardo Cockburn, and L. Donatella Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001/02), no. 5, 1749–1779. MR 1885715, DOI 10.1137/S0036142901384162
- Ivo Babuška, The finite element method with penalty, Math. Comp. 27 (1973), 221–228. MR 351118, DOI 10.1090/S0025-5718-1973-0351118-5
- Garth A. Baker, Finite element methods for elliptic equations using nonconforming elements, Math. Comp. 31 (1977), no. 137, 45–59. MR 431742, DOI 10.1090/S0025-5718-1977-0431742-5
- F. Bassi, S. ReBay, G. Mariotti, S. Pedinotti and M. Savini, A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows, Second European Conference on Turbomachinery fluid dynamics and thermodynamics (Antwerpen, Belgium) (R. Decuypere and G. Dibelius, eds.), Technologisch Institut, March 1997, 99-108.
- Carlos Erik Baumann and J. Tinsley Oden, A discontinuous $hp$ finite element method for convection-diffusion problems, Comput. Methods Appl. Mech. Engrg. 175 (1999), no. 3-4, 311–341. MR 1702201, DOI 10.1016/S0045-7825(98)00359-4
- F. Brezzi, G. Manzini, D. Marini, P. Pietra, and A. Russo, Discontinuous Galerkin approximations for elliptic problems, Numer. Methods Partial Differential Equations 16 (2000), no. 4, 365–378. MR 1765651, DOI 10.1002/1098-2426(200007)16:4<365::AID-NUM2>3.0.CO;2-Y
- Paul Castillo, Bernardo Cockburn, Ilaria Perugia, and Dominik Schötzau, An a priori error analysis of the local discontinuous Galerkin method for elliptic problems, SIAM J. Numer. Anal. 38 (2000), no. 5, 1676–1706. MR 1813251, DOI 10.1137/S0036142900371003
- H. Chen, Local error estimates of mixed discontinuous Galerkin methods for elliptic problems, J. Numer. Math., Vol. 12 (2004), 1-22.
- H. Chen, Z. Chen, Pointwise Error Estimates of Discontinuous Galerkin Methods with Penalty for Second-Order Elliptic Problems, SIAM J. Numer. Anal., 2004, to appear.
- Z. Chen, On the relationship of various discontinuous finite element methods for second order elliptic equations, East-West Numer. Math., 9 (2001), 99-122.
- Bernardo Cockburn, Suchung Hou, and Chi-Wang Shu, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case, Math. Comp. 54 (1990), no. 190, 545–581. MR 1010597, DOI 10.1090/S0025-5718-1990-1010597-0
- Bernardo Cockburn, George E. Karniadakis, and Chi-Wang Shu (eds.), Discontinuous Galerkin methods, Lecture Notes in Computational Science and Engineering, vol. 11, Springer-Verlag, Berlin, 2000. Theory, computation and applications; Papers from the 1st International Symposium held in Newport, RI, May 24–26, 1999. MR 1842160, DOI 10.1007/978-3-642-59721-3
- Bernardo Cockburn and Chi-Wang Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal. 35 (1998), no. 6, 2440–2463. MR 1655854, DOI 10.1137/S0036142997316712
- A. Demlow, Localized pointwise error estimates for mixed finite element methods, Math. Comp., 73 (2004) 1623-1653.
- Jim Douglas Jr. and Todd Dupont, Interior penalty procedures for elliptic and parabolic Galerkin methods, Computing methods in applied sciences (Second Internat. Sympos., Versailles, 1975) Lecture Notes in Phys., Vol. 58, Springer, Berlin-New York, 1976, pp. 207–216. MR 440955
- Sergio R. Idelsohn, Eugenio Oñate, and Eduardo N. Dvorkin (eds.), Computational mechanics, Centro Internacional de Métodos Numéricos en Ingeniería, Barcelona, 1998. New trends and applications. MR 1839022
- J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Sem. Univ. Hamburg 36 (1971), 9–15 (German). MR 341903, DOI 10.1007/BF02995904
- Joachim A. Nitsche and Alfred H. Schatz, Interior estimates for Ritz-Galerkin methods, Math. Comp. 28 (1974), 937–958. MR 373325, DOI 10.1090/S0025-5718-1974-0373325-9
- Béatrice Rivière, Mary F. Wheeler, and Vivette Girault, Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. I, Comput. Geosci. 3 (1999), no. 3-4, 337–360 (2000). MR 1750076, DOI 10.1023/A:1011591328604
- Alfred H. Schatz, Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids. I. Global estimates, Math. Comp. 67 (1998), no. 223, 877–899. MR 1464148, DOI 10.1090/S0025-5718-98-00959-4
- A. H. Schatz and L. B. Wahlbin, Interior maximum norm estimates for finite element methods, Math. Comp. 31 (1977), no. 138, 414–442. MR 431753, DOI 10.1090/S0025-5718-1977-0431753-X
- A. H. Schatz and L. B. Wahlbin, Maximum norm estimates in the finite element method on plane polygonal domains. I, Math. Comp. 32 (1978), no. 141, 73–109. MR 502065, DOI 10.1090/S0025-5718-1978-0502065-1
- Mary Fanett Wheeler, An elliptic collocation-finite element method with interior penalties, SIAM J. Numer. Anal. 15 (1978), no. 1, 152–161. MR 471383, DOI 10.1137/0715010
Bibliographic Information
- Hongsen Chen
- Affiliation: Department of Mathematics, University of Wyoming, Laramie, Wyoming 82070
- Email: hchen@uwyo.edu
- Received by editor(s): December 7, 2003
- Received by editor(s) in revised form: February 21, 2004
- Published electronically: July 16, 2004
- © Copyright 2004 American Mathematical Society
- Journal: Math. Comp. 74 (2005), 1097-1116
- MSC (2000): Primary 65N30, 65N15, 65N12; Secondary 41A25, 35B45, 35J20
- DOI: https://doi.org/10.1090/S0025-5718-04-01700-4
- MathSciNet review: 2136995