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A DOMAIN DECOMPOSITION METHOD USING EFFICIENT
INTERFACE-ACTING PRECONDITIONERS

SERGE KRÄUTLE

Abstract. The conjugate gradient boundary iteration (CGBI) is a domain
decomposition method for symmetric elliptic problems on domains with large

aspect ratio. High efficiency is reached by the construction of preconditioners
that are acting only on the subdomain interfaces. The theoretical derivation
of the method and some numerical results revealing a convergence rate of
0.04–0.1 per iteration step are given in this article. For the solution of the
local subdomain problems, both finite element (FE) and spectral Chebyshev
methods are considered.

1. Introduction

This article is concerned with a domain decomposition (DD) method for sym-
metric elliptic problems proposed by Borchers et al. [1] under the name conjugate
gradient boundary iteration (CGBI). CGBI is based on a decomposition of the
computational domain into nonoverlapping subdomains. In the present formula-
tion, CGBI requires a domain decomposition without interior cross-points of the
subdomain interfaces. Hence, it is best suited for domains with large aspect ra-
tio, as they occur, e.g., for the computation of flows in a channel [3] (see Figure
1). In the theory of CGBI, the global problem is reformulated in terms of finding
the correct natural boundary condition at the subdomain interfaces. The resulting
dual problem for the boundary conditions is formulated as a minimization principle
and is solved by preconditioned conjugate gradients (CG). Concerning the type of
boundary conditions, CGBI resembles the finite element tearing and interconnect-
ing (FETI) method by Farhat and Roux [8, 9, 10, 12, 17, 18], with the Neumann
interface condition of CGBI corresponding to the Lagrangian multipliers of the
FETI setting. One main difference between FETI and CGBI is that the CGBI pre-
conditioner acts only on the subdomain interfaces instead of solving local problems
on the subdomains. This is an advantage in terms of the computational costs, as
the computational time for the CGBI interface preconditioner is negligible within
a CG step, while the solution of another local problem on each subdomain, which
is a widespread method of preconditioning for FETI [9, 12, 17], is almost as costly
as the unpreconditioned CG step itself. Nevertheless, high convergence rates are
achieved with the proposed boundary preconditioner. In fact, the convergence rate
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Figure 1. The decomposition of a computational domain as it
occurs for the computation of the flow past an obstacle in a channel.

does not depend on the number of subdomains and the discretization parameter
and is, at least for a model problem, smaller than for FETI.

DD methods like CGBI enable the coupling of different local solvers. The subdo-
main solvers considered in this article are finite element (FE) solvers and a Cheby-
shev spectral collocation solver. In [3], CGBI was used to couple an FE and the
Chebyshev solver to compute the flow past obstacles in a channel. This coupling
facilitates making use of the high efficiency of spectral methods on simple, rectan-
gular parts of the computational domain with the flexibility of the FE method on
more complicated parts.

The theory of CGBI is developed for the Poisson resolvent equation

(1.1) Lu := σu − ∆u = f on Ω, Ω ⊂ R
n, σ ≥ 0.

This equation is chosen for the following reason: (1.1) is the prototype of the equa-
tion that arises from a parabolic problem after temporal discretization (σ∼ 1/∆t
with ∆t = timestep size). Furthermore, equation (1.1) derives from the tempo-
ral discretization of the Navier–Stokes equations if a pressure correction method
(fractional step method) is used: After transformation to Lagrangian coordinates
(practically, the computation of the foot points of the characteristics), a symmetric
problem of type (1.1) with σ∼Re/∆t, Re = Reynolds number, has to be solved for
each velocity component. In the last step, a Poisson equation ((1.1) with σ = 0)
is solved for the pressure, and the velocity is projected [3]. Another method for
handling parabolic equations, also using Neumann interface conditions, is described
in [15].

This article is structured as follows: In Section 2, the theoretical background
of CGBI is presented. While the theory of the FETI method is based on a saddle
point problem living on the union of all subdomain boundaries, in the center of
the CGBI method there is an unconstrained minimization problem acting on the
union of the subdomain interfaces. Another difference to the FETI approach is
that, since we want to derive an estimate of the condition number independent1

of the discretization parameter h, we focus on the nondiscretized problem. These
estimates also hold (uniformly with respect to the discretization parameter) for
the discretized problem using conforming linear finite elements. A result of this
section is that the square root of a negative Laplace-Beltrami operator acting on
the interfaces is an efficient preconditioner for the Poisson equation, leading to a
condition number independent of the number of subdomains and the discretization
parameter.

1Since we restrict ourselves to domain decompositions without inner cross-points, the typical
polylogarithmic h-dependence of the condition number of Schur methods (cf. [6] and also [5, 12,
17, 18]) is suboptimal here.
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Section 3 deals with the question of how to discretize this interface precondi-
tioner. Methods based on the fast Fourier transform and on sparse band matrices
are proposed. Originally, these methods were developed for equidistant boundary
meshes. Generalizations to uniform meshes and to a Chebyshev–Gauss–Lobatto
boundary mesh are given.

In order to get an impression of the efficiency of CGBI, it is desirable to get
a comparison of the condition number (the ratio of the largest and the smallest
eigenvalue of the preconditioned operator) of CGBI to the preconditioned FETI
method. If we restrict ourselves to a very simple computational domain with a
simple domain decomposition, this computation of the condition number for the
nondiscretized preconditioned operator can be done explicitly. As a result of Sec-
tion 4, the CGBI condition number is only the square root of the condition number
of FETI preconditioned with the well-known Dirichlet preconditioner [9].

In Section 5, numerical results for CGBI applied to the Poisson equation on 2–
128 subdomains are presented. The performance of the preconditioners, both for
linear finite element solvers and for Chebyshev spectral solvers, is demonstrated.

2. Theory of CGBI

Let us consider a bounded domain Ω ⊂ R
n with Lipschitz continuous boundary

and the Poisson resolvent equation (1.1). For the sake of simplicity let us assume
Dirichlet boundary conditions

(2.1) u = g on ∂Ω

for the moment. For f given in H−1(Ω) which is defined as the dual space of H1
0 (Ω)

we search for a weak solution u ∈ H1(Ω) of (1.1)–(2.1).

2.1. The domain decomposition, definition of norms. For the solution of the
given problem in parallel, let the domain Ω be decomposed into p nonoverlapping
subdomains Ωi, i = 1, . . . , p, in such a way that ∂Ωi is Lipschitz continuous and
Γi := ∂Ωi ∩ ∂Ωi+1 �= ∅ for i = 1, . . . , p− 1 and ∂Ωi ∩ ∂Ωj = ∅ else (see Figure 1).

We set Γ =
⋃p−1
i=1 Γi. We denote by νi the outward unit normal on ∂Ωi. Obvi-

ously, νi = −νi+1 on Γi. For a function u = (u1, . . . , up) defined on Ω, ui ∈ H1(Ωi),
we define the jump [u] on Γ by [u] = ui − ui+1 on Γi. We denote by H1/2(Γi),
H

1/2
00 (Γi) the usual fractional Sobolev spaces (trace spaces) (see, e.g., [14]) and

by H1/2(Γ), H1/2
00 (Γ) the Cartesian products of the concerned spaces on Γi. The

dual spaces of H1/2
00 (Γi), H

1/2
00 (Γ) are denoted by H−1/2(Γi), H−1/2(Γ), and ∆Γi ,

∆Γ, ∆∂Ωi are the Laplace–Beltrami operators whose domains are contained in
H1

0 (Γi), H1
0 (Γ), H1(∂Ωi), respectively. It is well known that for u ∈ ⊗p

i=1H
1(Ωi),

[u] ∈ H1/2(Γ) holds, and for u taken from the space

H1
∂Ω =

p⊗
i=1

H1
i,∂Ω,

where

H1
i,∂Ω = {u ∈ H1(Ωi) |u|∂Ω∩∂Ωi = 0},

[u] ∈ H
1/2
00 (Γ) holds.
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Let σ ∈ [0,∞). On H1(Ωi), H
1/2
00 (Γi), H1/2(∂Ωi) we define the norms2

‖u‖σ,1,Ωi := ‖(σI−∆)1/2u‖L2(Ωi) ∼ (σ ‖u‖2
L2(Ωi)

+ ‖∇u‖2
L2(Ωi)

)1/2,(2.2)

‖ψ‖σ, 12 ,Γi
:= ‖(σI−∆Γi)

1/4ψ‖L2(Γi)

∼ (
√
σ ‖ψ‖2

L2(Γi)
+ ‖(−∆Γi)

1/4ψ‖2
L2(Γi)

)1/2,(2.3)

‖ψ‖σ,12 ,∂Ωi
:= ‖(σI−∆∂Ωi)

1/4ψ‖L2(∂Ωi)

∼ (
√
σ ‖ψ‖2

L2(∂Ωi)
+ ‖(−∆∂Ωi)

1/4ψ‖2
L2(∂Ωi)

)1/2,(2.4)

respectively. The equivalences ’∼’ can be derived by the spectral decomposition
of the operators and are meant to hold uniformly with respect to σ. Using these
norms, the well-known trace theorem can be generalized:

Lemma 2.1.
(a) The norm of the trace operator Ti : H1

i,∂Ω → H
1/2
00 (Γi), with respect to the

norms (2.2), (2.3) is bounded uniformly with respect to σ ∈ [0,∞).
(b) There is a family of extension operators Pσ,i : H1/2

00 (Γi) → H1(Ωi) that are
continuous with respect to the norms (2.2), (2.3) and bounded uniformly
with respect to σ ∈ [0,∞), such that (Pσ,iu)|∂Ωi\Γi

= 0.

Proof. See the Appendix. �

The definitions (2.2), (2.3) lead in an obvious manner to the definition of the
norms ‖ · ‖σ,1,Ω, ‖ · ‖σ,1/2,Γ on the product spaces H1

∂Ω, H
1/2
00 (Γ), resp., and their

dual norms ‖ · ‖σ,−1,Ω, ‖ · ‖σ,−1/2,Γ.

2.2. The dual problem. For the statement of the CGBI algorithm we require a
right-hand side f = (f1, . . . , fp) with fi ∈ H−1(Ωi), which is only a slightly stronger
assumption than that made on f in the global problem (1.1)–(2.1).

CGBI for the problem (1.1)–(2.1) consists of a prestep and a main step. In the
prestep, on each subdomain the boundary value problem

Lwi = fi in Ωi,
wi = g on ∂Ωi ∩ ∂Ω,

∂wi
∂νi

= 0 on Γi−1 ∪ Γi(2.5)

is solved (Γ0,Γp := ∅), which can easily be done in parallel. If we decompose the
solution u of the global problem (1.1) as

ui = wi + vi

on each Ωi, then the boundary value problem

Lvi = 0 in Ωi,
vi = 0 on ∂Ωi ∩ ∂Ω,

∂vi
∂νi

= −ϕi−1 on Γi−1,

∂vi
∂νi

= ϕi on Γi(2.6)

2For σ = 0, (2.2) and (2.4) are seminorms. On H1
i,∂Ω, (2.4) is even for σ = 0 a norm.
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(which will be denoted as the main step) follows for vi obviously. In (2.6), the
boundary value function ϕ = (ϕ1, . . . , ϕp−1) is a priori unknown. To make (2.6)
meaningful, ϕ has to be taken from the space H−1/2(Γ). Let us regard v =
(v1, . . . , vp) = v(ϕ) in (2.6) as a function of ϕ. By construction, the normal de-
rivative of v(ϕ) is continuous across the interfaces Γ. So u(ϕ) = w + v(ϕ) is a
solution of (1.1) if and only if the jump [u(ϕ)] of u(ϕ) at the interfaces is the zero
function on Γ (in the sense of traces). Hence, u(ϕ) is the solution of (1.1)–(2.1) if
ϕ ∈ H−1/2(Γ) fulfils the equation

(2.7) [v(ϕ)] = −[w]

on Γ, or, in the weak formulation

(2.8) 〈ψ, [v(ϕ)]〉Γ = −〈ψ, [w]〉Γ ∀ψ ∈ H−1/2(Γ).

〈·, ·〉Γ stands for the duality pairing between the spaces H1/2
00 (Γ) and H−1/2(Γ).

Hence, we have reduced the problem (1.1)–(2.1) to the dual problem (2.8) living
only on the subdomain interfaces.

2.3. The bilinear form. In order to solve problem (2.8), we define the bilinear
form

(2.9) b(ψ, ϕ) = 〈ψ, [v(ϕ)]〉Γ
on H−1/2(Γ) ×H−1/2(Γ), v(ϕ) defined by (2.6). The corresponding operator is

(2.10) A : ϕ �−→ [v(ϕ)], H−1/2(Γ) −→ H
1/2
00 (Γ).

The solubility of (2.8) is guaranteed by the following theorem:

Theorem 2.2.

(i) The bilinear form b is symmetric:

b(ψ, ϕ) = b(ϕ, ψ);

(ii) b is continuous with respect to the σ-weighted norm of H−1/2(Γ):

(2.11) b(ψ, ϕ) ≤ c1 ‖ψ‖σ,− 1
2 ,Γ

‖ϕ‖σ,− 1
2 ,Γ

;

(iii) b is coercive:

(2.12) b(ϕ,ϕ) ≥ c2 ‖ϕ‖ 2
σ,− 1

2 ,Γ
.

Hence,

(2.13) c2 ‖ϕ‖ 2
σ,− 1

2 ,Γ
≤ b(ϕ,ϕ) ≤ c1 ‖ϕ‖ 2

σ,−1
2 ,Γ

holds for all ϕ ∈H−1/2(Γ). The constants c1, c2 > 0 depend on the norms of the
local trace and prolongation operators on Ωi, i = 1, . . . , p. They can be chosen such
that they are independent of the resolvent parameter σ, of global properties of Ω
and of the number of subdomains p.

Before we prove Theorem 2.2, let us first state the consequences of the theorem:
Problem (2.8) has a unique solution, and due to the symmetry, there is a mini-

mization principle

(2.14) J(ϕ) :=
1
2
b(ϕ,ϕ) + 〈ϕ, [w]〉Γ −→ min in H−1/2(Γ),

and the classical CG algorithm can be used to compute the solution of (2.8)/(2.14).
Let us remark that there is another well-known domain decomposition method,
which was analysed by consideration of an underlying minimization principle, the
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Lions’ method [16, 11]. It uses Robin-type interface conditions instead of our Neu-
mann conditions, and its minimization principle acts on both the interfaces and the
subdomains.

Furthermore, estimate (2.13) shows how to construct an efficient preconditioner
for the operator A:

Let C be the Riesz isometry from the Hilbert space H1/2
00 (Γ) with norm (2.3) to

its dual H−1/2(Γ):

(2.15) C = (σI − ∆Γ)1/2.

Expressing the norm ‖ · ‖σ,− 1
2 ,Γ

in terms of C, (2.13) is equivalent to

c2 ‖C−1/2ϕ‖ 2
L2(Γ) ≤ b(ϕ,ϕ) ≤ c1 ‖C−1/2ϕ‖ 2

L2(Γ) ∀ϕ ∈ H−1/2(Γ).

Substituting ψ = C−1/2ϕ, we arrive at

(2.16) c2 ‖ψ‖ 2
L2(Γ) ≤ (ψ, C1/2AC1/2ψ)L2(Γ) ≤ c1 ‖ψ‖ 2

L2(Γ) ∀ψ ∈ L2(Γ)

which is a main result of the CGBI theory. It reveals that C−1 is an efficient
preconditioner for A: As the constants c1, c2 are independent of σ, the size of Ω and
the number p of subdomains, we can expect a condition number for the discretized
problem (2.8), preconditioned with a discretized C−1, which is independent of σ,
|Ω|, p and also of the discretization parameter, provided the discretization of C−1

is adequate. Therefore, the convergence rate of CGBI with respect to the norm
b(ϕ,ϕ)1/2 will be independent of these parameters. Note that this norm can be
characterized by b(ϕ,ϕ)1/2 = ‖v(ϕ)‖σ,1,Ω (cf. (2.17)). By the Poincaré inequality
in H1

i,∂Ω, ‖v(ϕ)‖1,1,Ω ≤ c ‖v(ϕ)‖σ,1,Ω with a c > 0 independent of σ ∈ [0,∞). So
the convergence result carries over to H1.

Since the preconditioned CG (PCG) algorithm requires the application of C
to a vector, we will focus on a discretization of C instead of C−1, and we will
frequently call C instead of C−1 our preconditioner. For possible discretizations of
C see Section 3.

If rectangular subdomains are used, the dependence of c1, c2 on the local trace
and prolongation operators in Theorem 2.2 carries over to a dependence of c1, c2
on the aspect ratio of the subdomains. If a rather short channel is divided into
many subdomains leading to a poor subdomain aspect ratio, c1/c2 becomes large.
For quadratic subdomains or subdomains with length (in direction of the channel)
bigger than height, c1/c2 is close to 1 (cf. Section 4.1).

Proof of Theorem 2.2. (i) Symmetry. It holds

b(ψ, ϕ) =
p−1∑
i=1

〈ψi, vi(ϕ) − vi+1(ϕ)〉Γi =
p−1∑
i=1

〈ψi, vi(ϕ)〉Γi + 〈−ψi, vi+1(ϕ)〉Γi

=
p−1∑
i=1

〈
∂vi(ψ)
∂νi

, vi(ϕ)
〉

Γi

+
〈
∂vi+1(ψ)
∂νi+1

, vi+1(ϕ)
〉

Γi

=
p−1∑
i=1

〈
∂vi(ψ)
∂νi

, vi(ϕ)
〉

Γi

+
p∑
i=2

〈
∂vi(ψ)
∂νi

, vi(ϕ)
〉

Γi−1

=
p∑
i=1

〈
∂vi(ψ)
∂νi

, vi(ϕ)
〉
∂Ωi\∂Ω

=
p∑
i=1

〈
∂vi(ψ)
∂νi

, vi(ϕ)
〉
∂Ωi

.
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Application of the divergence theorem on each subdomain Ωi yields for b the rep-
resentation

b(ψ, ϕ) =
p∑
i=1

∫
Ωi

(vi(ψ)∆vi(ϕ) + ∇vi(ψ) · ∇vi(ϕ)) dx

=
p∑
i=1

∫
Ωi

(σ vi(ψ) vi(ϕ) + ∇vi(ψ) · ∇vi(ϕ)) dx.(2.17)

(ii) Continuity. From the representations (2.17) and (2.9) we get

‖v(ϕ)‖2
σ,1,Ω = b(ϕ,ϕ) =

p−1∑
i=1

〈ϕi, vi(ϕ) − vi+1(ϕ)〉Γi(2.18)

≤
p−1∑
i=1

‖ϕi‖σ,− 1
2 ,Γi

(‖vi(ϕ)‖σ, 12 ,Γi
+ ‖vi+1(ϕ)‖σ, 12 ,Γi

).

Using the generalized trace Lemma 2.1, the last line can be estimated by

(2.19) cT

p−1∑
i=1

‖ϕi‖σ,− 1
2 ,Γi

(‖vi(ϕ)‖σ,1,Ωi + ‖vi+1(ϕ)‖σ,1,Ωi+1), cT > 0.

(2.18) and the Cauchy–Schwarz inequality applied to (2.19) lead to

(2.20) ‖v(ϕ)‖2
σ,1,Ω = b(ϕ,ϕ) ≤ 2 cT ‖ϕ‖σ,− 1

2 ,Γ
‖v(ϕ)‖σ,1,Ω.

A division yields

(2.21) ‖v(ϕ)‖σ,1,Ω ≤ 2 cT ‖ϕ‖σ,− 1
2 ,Γ
.

Following (2.18)–(2.20) with b(ϕ,ϕ) replaced by b(ψ, ϕ), we get similarly

b(ψ, ϕ) ≤ 2 cT ‖ψ‖σ,− 1
2 ,Γ

‖v(ϕ)‖σ,1,Ω ≤ 4 c2T ‖ψ‖σ,− 1
2 ,Γ

‖ϕ‖σ,−1
2 ,Γ

where we used (2.21) in the last step.
(iii) Coercivity. By definition,

(2.22) ‖ϕ‖σ,− 1
2 ,Γ

= sup
ψ∈H1/2

00 (Γ)

‖ψ‖
σ, 1

2 ,Γ=1

p−1∑
i=1

〈ϕi, ψi〉Γi

holds. Due to Lemma 2.1, every ψi ∈ H
1/2
00 (Γi) can be extended continuously to

a H1(Ωi) function Pσ,iψi such that (Pσ,1ψi)|∂Ωi\Γi
= 0, and the continuity of Pσ,i

is uniform with respect to σ. Hence, Pσψ = (Pσ,1ψ1, . . . , Pσ,p−1ψp−1, 0) depends
continuously on ψ:

(2.23) ‖Pσψ‖σ,1,Ω ≤ cP ‖ψ‖σ, 12 ,Γ,
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cP >0 independent of σ. For the duality pairing in (2.22) we get

〈ϕi, ψi〉Γi =
〈
∂

∂νi
vi(ϕ), (Pσ,iψi)|∂Ωi

〉
∂Ωi

=
∫
Ωi

(σ vi(ϕ)Pσ,iψi + ∇vi(ϕ) · ∇Pσ,iψi) dx

≤ ‖vi(ϕ)‖σ,1,Ωi ‖Pσ,iψi‖σ,1,Ωi .

Summation over i, the Cauchy–Schwarz inequality, and (2.23) yield

〈ϕ, ψ〉Γ ≤ cP ‖v(ϕ)‖σ,1,Ω ‖ψ‖σ, 12 ,Γ.
Hence, (2.22) evaluates to

‖ϕ‖σ,− 1
2 ,Γ

≤ cP ‖v(ϕ)‖σ,1,Ω = cP b(ϕ,ϕ)1/2.

�

2.4. Generalization to the case of “floating subdomains”. Let us consider
(1.1) with

σ = 0
in this section.

If Neumann boundary conditions

(2.24)
∂u

∂ν
= g

are imposed on a part ∂ΩNm of ∂Ω and Dirichlet conditions (2.1) on ∂ΩDir =
∂Ω \ ∂ΩNm, 3 the problem of the so-called floating subdomains may occur. These
are subdomains Ωi with pure Neumann boundary, i.e., ∂Ωi ∩ ∂ΩDir = ∅. If we
would merely adapt the boundary conditions on ∂Ωi ∩ ∂ΩNm in the prestep (2.5)
and in the main problem (2.6), those problems would be ill posed on the floating
subdomains. Therefore modifications to these subproblems are necessary to ensure
the existence and uniqueness of the local solutions. To keep the notation simple,
let us assume that ΓDir ⊂ ∂Ωp, i.e., all Ω1, . . . ,Ωp−1 are floating.

In the prestep (2.5), the interface boundary condition is modified to

∂wi
∂νi

= ci on Γi,
∂wi
∂νi

= −ci−1 on Γi−1, i = 1, . . . , p,

where the c1, . . . , cp−1 ∈ R are constants chosen such that the compatibility condi-
tions

(2.25) 〈fi, 1〉Ωi + 〈g, 1〉∂Ωi∩∂Ω + ci|Γi| − ci−1|Γi−1| = 0, i = 1, . . . , p− 1,

c0 := 0, are met. Equation (2.25) serves as a recurrency equation for the ci. So
far, the local solutions wi are only defined up to a constant. The uniqueness of the
wi is guaranteed by imposing the constraint

∫
Γi

[w] = 0, i = 1, . . . , p − 1, which is
reached by adding a suitable constant to each wi, i = p− 1, . . . , 1.

Concerning the main problem (2.6) and the corresponding bilinear form b, we
replace the function spaces of the Dirichlet case for the interface conditions ϕ, for
the local solutions u(ϕ) and for the jumps [u(ϕ)].

3Such problems occur for the pressure in the computation of a Navier–Stokes flow by a pressure
correction scheme.
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The assumption ϕ ∈ H
−1/2
Nm (Γ), where H−1/2

Nm (Γ) is the dual space of

H
1/2
Nm(Γ) = {ψ ∈ H1/2(Γ) |

∫
Γi

ψi do = 0, i = 1, . . . , p− 1},

ensures the solubility of the Neumann problem corresponding to (2.6). As in the
prestep, the uniqueness of the solution v(ϕ) is implied by imposing

∫
Γi

[v(ϕ)] = 0,
i = 1, . . . , p − 1. These constraints for v(ϕ) and for w are chosen such that the
jumps [v(ϕ)], [w] are in the space H1/2

Nm(Γ).
The prestep and the main problem now read as follows:

Lwi = fi in Ωi,
wi = g on ∂Ωi ∩ ∂ΩDir,

∂wi
∂νi

= g on ∂Ωi ∩ ∂ΩNm,

∂wi
∂νi

= −ci−1 on Γi−1 (if i > 1),

∂wi
∂νi

= ci on Γi (if i < p),∫
Γi

wi do =
∫
Γi

wi+1 do (if i < p)(2.26)

for i = 1, . . . , p, where c0 = 0, ci = 1
|Γi| (ci−1|Γi−1| − 〈fi, 1〉Ωi − 〈g, 1〉∂Ωi∩∂Ω) and

Lvi = 0 in Ωi,
vi = 0 on ∂Ωi ∩ ∂ΩDir,

∂vi
∂νi

= 0 on ∂Ωi ∩ ∂ΩNm,

∂vi
∂νi

= −ϕi−1 on Γi−1 (if i > 1),

∂vi
∂νi

= ϕi on Γi (if i < p),∫
Γi

vi do =
∫
Γi

vi+1 do (if i < p)(2.27)

for i = 1, . . . , p. Note that the computation and addition of constants in (2.26)–
(2.27) play the role of the coarse system (the projection) in the FETI theory [9].
So this step becomes rather trivial for the CGBI substructuring of a channel.

For the new definition of b : H−1/2
Nm (Γ)× : H−1/2

Nm (Γ) → R including the new
definition of v(ϕ) by (2.27), Theorem 2.2 also holds in the presence of floating
subdomains.

In deviation from the proof of the coercivity in the Dirichlet case, one constructs
a continuous extension operator from H1/2(Γi) to {u ∈ H1(Ωi)|u|Γi−1 = 0}. Note
that in the space {v ∈ ⊗p

i=1H
1(Ωi)|

∫
Γi
vi =

∫
Γi
vi+1, vn|∂ΩDir = 0} (containing

the solutions v(ϕ) of (2.27)) a Poincaré inequality holds, as those integral mean
values of the traces depend continuously on vi, vi+1 (e.g., [13, Sec. 2.4.3]). Hence,
the seminorm (

∑
i ‖∇vi‖2

L2(Ωi)
)1/2, for which we derive the convergence result, is

truly a norm on that space.
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The derivation of the preconditioner C for the Dirichlet case in Section 2.3 carries
over to the preconditioner

(2.28) CNm = (σI − ∆Nm)1/2

or CNm = (−∆Nm)1/2 (since σ = 0) for the Neumann case, where −∆Nm is
the Laplace–Beltrami operator with homogeneous Neumann boundary conditions
whose domain is contained in H1(Γ).

3. The construction of preconditioners

Let us restrict ourselves to the case Ω ⊂ R
2. The interfaces are Lipschitz curves

which can be parametrized by their arc length. To keep the notation simple, let us
identify each interface with the interval [0, L].

3.1. Preconditioners on equidistant boundary mesh. In Sections 2.3 and 2.4
we motivated the use of the preconditioner (2.15) in the case of Dirichlet conditions
at ∂Ω∩Γi and (2.28) in the case of σ=0 and Neumann conditions at ∂Ω∩ Γi. For
the discretization of the operators

C = (σI − ∆Γi)
1/2, CNm = (σI − ∆Nm)1/2

on each Γi we propose the following two approaches:

3.1.1. The spectral preconditioner. Obviously, sk(x) = sin kπx
L , k ∈ N, is an orthog-

onal basis in H
1/2
00 ([0, L]) and ck(x) = cos kπxL , k ∈ N, is an orthogonal basis in

H
1/2
Nm([0, L]). A given boundary value ψ can be decomposed with respect to this

basis. In the Fourier space, the action of C (CNm) is easily described:

C : ψ =
∑
k≥1

αk sk �−→
∑
k≥1

αk

√
σ +

(
kπ

L

)2

sk,(3.1)

CNm : ψ =
∑
k≥1

αk ck �−→
∑
k≥1

αk

√
σ +

(
kπ

L

)2

ck.(3.2)

As a discretization Ch (ChNm), we use the following algorithm:

(1) For ψ given on equidistantly spaced mesh points x0, . . . , xN on [0, L] = Γi,
compute the discrete sine or cosine coefficients αk, respectively, by the fast
Fourier transform (FFT).

(2) Perform αk �→ √
σ + (kπ/L)2 αk.

(3) Get the discrete values of Chψ (ChNmψ) by application of FFT−1.

This preconditioner only takes O(N logN) operations. Assuming that there are
about N2 mesh points within Ωi (which would be typical for a quadratic subdo-
main), the computational costs of the preconditioner are clearly negligible compared
to the costs of the local solver (which are at least O(N2) operations). This is the
main difference between CGBI and FETI: For the FETI preconditioning, another
local problem on each subdomain has to be solved [9] which approximately doubles
the computational costs per CG iteration step.
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3.1.2. Matrix preconditioners. Another approach is to approximate the above map-
ping by a (sparse) band matrix. Let us focus on the case σ = 0; the generalization
to σ > 0 is obvious.

Clearly, the discrete spectral preconditioner Ch (ChNm) proposed in Section 3.1.1
has the eigenvalues λk = kπ/L, k = 1, . . . , N − 1 (k = 1, . . . , N , resp.) and the
eigenvectors vk = (vk,i)i=0,...,N , vk,i = sin kiπ

N (vk,i = cos kiπN , resp.). One can
prove [13] that the symmetric band matrix CM with entries

(3.3) aj =




π + 1 − 2−�log2N�, j = 0,
−π

2 , j = 1,
− 1

2j , j = 2, 4, 8, 16, . . . ,
0, elsewhere

on the jth diagonal (after consideration of the boundary condition4) is spectrally
equivalent in the sense that for the condition numbers κ

c1 κ(Ch) ≤ κ(CM ) ≤ c2 κ(Ch)
holds with constants c1, c2 > 0 independent ofN . As CM contains only about log2N
nonzero bands, the application of CM as a preconditioner again takes O(N logN)
operations.

A discretization even simpler than (3.3) is given by the symmetric tridiagonal
matrix Ctri with entries a0 = 1/2 + 1/N , a1 = −1/4. However, this discretization
is not spectrally equivalent to Ch with constants independent of N [13].

3.2. Preconditioners on uniform boundary meshes. Both the spectral and
the matrix preconditioner in the present form make use of the fact that the discrete
values of ψh on Γi = [0, L] are equidistantly spaced. This section deals with the
case when the meshes on the subdomains Ωi, Ωi+1 coincide on Γi but are not
equidistant.5 It is not essential to consider the full σ-dependent operator, since the
σ-dependent part can be split off by the equivalence

(3.4) (σI − ∆Γi)
1/2 ∼ √

σ I + (−∆Γi)
1/2.

For h > 0 let Mh be a mesh 0 = x0 < x1 < · · · < xN = L on [0, L]. For each
Mh we define hmax = max{xi+1 − xi}, hmin = min{xi+1 − xi}, hmean = L/N .
We define a piecewise linear mesh distribution function wh : [0, L] → [0, L] with
wh(iL/N) = xi. Hence, wh maps an equidistant mesh onto the given mesh, and
the Lipschitz property

(3.5)
hmin
hmean

≤ wh(x) − wh(y)
x− y

≤ hmax
hmean

holds.

Lemma 3.1. (i) Let the mesh be uniform, i.e.,

hmin ≥ d hmax

4(3.3) reflects the situation for periodic boundary conditions. For Dirichlet or Neumann con-
ditions, some matrix entries are modified in such a way that CM still has the same eigenvectors
as Ch (Ch

Nm).
5If the meshes of Ωi and Ωi+1 do not coincide on Γi, an interpolation of the discrete boundary

values onto a common boundary mesh is done.
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with d > 0 independent of h for all meshes under consideration. Then, for
any ψh ∈ H1/2([0, L]), the function ψ̃h : [0, L] → R defined by ψ̃h = ψh ◦wh
is in H1/2([0, L]) and the equivalence

c1 ‖ψ̃h‖H1/2(0,L) ≤ ‖ψh‖H1/2(0,L) ≤ c2 ‖ψ̃h‖H1/2(0,L)

holds with c1 = d, c2 = d−1 independent of h and ψh.
(ii) The same is true if we replace H1/2(0, L) by H1/2

00 (0, L) in (i).

Proof. We will make use of the following well-known norm equivalences (see [14,
Chap. 1, Theorem 11.7]):

L∫
0

L∫
0

(
ψ(x) − ψ(y)

x− y

)2

dx dy +

L∫
0

ψ(x)2 dx ∼ ‖ψ‖2
H1/2(0,L),(3.6)

L∫
0

L∫
0

(
ψ(x) − ψ(y)

x− y

)2

dx dy +

L∫
0

1
x(L − x)

ψ(x)2 dx ∼ ‖ψ‖2

H
1/2
00 (0,L)

.(3.7)

(i) Transformation of the integrals in (3.6) and application of (3.5) yield

‖ψh‖2
H1/2(0,L) ∼

L∫
0

(ψh ◦ wh)2 w′
h dx

+

L∫
0

L∫
0

(
ψh(wh(x)) − ψh(wh(y))

x− y

)2 (
x− y

wh(x) − wh(y)

)2

w′
h(x)w

′
h(y) dx dy

≤ hmax
hmin

L∫
0

(ψh ◦ wh)2 dx +
h2
max

h2
min

L∫
0

L∫
0

(
ψh ◦ wh(x) − ψh ◦wh(y)

x− y

)2

dx dy

≤ 1
d2

‖ψ̃h‖2
H1/2(0,L).

Similarly, we get ‖ψh‖H1/2(0,L) ≥ d ‖ψ̃h‖H1/2(0,L).

(ii) We use representation (3.7) of the norm in H
1/2
00 (0, L) and follow the proof

of (i). It remains to estimate the term

(3.8)

L∫
0

ψh(x)2

x(L − x)
dx =

L∫
0

(ψh ◦wh(x))2
x(L − x)

x(L − x)
wh(x)(L − wh(x))

w′
h(x) dx.

The fraction
x(L − x)

wh(x)(L − wh(x))
=

x

wh(x) − wh(0)
L− x

wh(L) − wh(x)

in (3.8) can be estimated with help of the Lipschitz property (3.5) which leads to
the upper bound h2

mean/h
2
min and the lower bound h2

mean/h
2
max. For the weight in

(3.8) we get the estimate

d2 ≤ h2
min

h2
max

≤ x(L− x)
wh(x)(L − wh(x))

w′
h(x) ≤

h2
max

h2
min

≤ d−2.

�
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The lemma leads to an L2-symmetric preconditioner which evaluates ψ ◦ wh
instead of ψ:

Corollary 3.2. On H1/2
00 (0, L), the operator Cwh

ψ = 1
w′

h◦w−1
h

(−∆[0,L])1/2(ψ◦wh)◦
w−1
h is spectrally equivalent to (−∆[0,L])1/2 with equivalence constants uniform with

respect to h.

Proof. For ψ taken from the dense subspace H1
0 (0, L) of H1/2

00 (0, L) we derive by
Lemma 3.1 and by an integral transformation

((−∆Γi)
1/2ψ, ψ)L2(0,L) ∼ ((−∆Γi)

1/2(ψ ◦ wh), ψ ◦ wh)L2(0,L)

=

L∫
0

(−∆Γi)
1/2(ψ ◦ wh)(x) ψ ◦ wh(x) dx

=

L∫
0

((−∆Γi)1/2(ψ ◦ wh)) ◦ w−1
h (y)

w′
h ◦ w−1

h (y)
ψ(y) dy = (Cwh

ψ, ψ)L2(0,L).

�

Note that in the discrete version

Chwh
ψh =

1
w′
h ◦ w−1

h

Ch(ψh ◦ wh) ◦ w−1
h ,

Ch(ψ ◦wh) ◦w−1
h is simply the application of Ch to the discrete mesh values of ψh,

and that w′
h ◦ w−1

h (x) evaluates to the local mesh size hloc divided by hmean.
The consequence of Corollary 3.2 is that for uniform boundary meshes we can

use the preconditioners developed in Section 3.1 without loss of the independence
of the condition number on the discretization parameter if we weight the result by
1/hloc. The generalization of the corollary to the Neumann case is obvious. For
σ > 0, the norm equivalence (3.4) leads directly to the preconditioner

√
σI + Chwh

.

3.3. Preconditioners on Gauss–Lobatto (GL) boundary meshes. If spec-
tral Chebyshev solvers [2, 3] are used on some of the subdomains, they require
a Chebyshev–Gauss–Lobatto mesh. Its restriction to an interface Γi is a one-
dimensional Chebyshev–Gauss–Lobatto mesh. If we identify Γi with the interval
[−1, 1], the Gauss–Lobatto mesh points are given by

xk = cos
πk

N
, k = 0, . . . , N.

Clearly, this mesh is not uniform, as hmin = xN−1−xN = O(h2
max), i.e., hmax/hmin

→ ∞ for N → ∞. So Lemma 3.1 is useless for this kind of mesh. Numerical tests
using interpolation of the discrete values given on the GL mesh to an equidistant
mesh gave unsatisfactory results.6 Instead of this, an approach similar to Section 3.2
is investigated.

Observing that the Gauss–Lobatto grid values of ψ on [−1, 1] are identical with
the equidistant grid values of ψ ◦ cos on [0, π], it is obvious that the numerical
evaluation of (−∆Γi)

1/2(ψ ◦ cos) can be done following Section 3.1. So we have to

6It is well known that local interpolation of data can strongly perturbate Fourier analysis.
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express ‖(−∆Γi)1/2ϕ‖L2 in terms of ‖(−∆Γi)1/2(ϕ◦cos)‖L2 . To get this connection,
we make use of the interpolation theory of weighted Sobolev–Slobodeckij spaces.

Let us consider the case of Dirichlet boundary conditions at y = ±1, i.e., ψ ∈
H

1/2
00 (−1, 1).

Lemma 3.3. For ψ ∈ H
1/2
00 (−1, 1), ψ ◦ cos ∈ H

1/2
00 (0, π) and the equivalence of the

norms

(3.9) ‖ψ‖
H

1/2
00 (−1,1)

∼ ‖ψ ◦ cos ‖
H

1/2
00 (0,π)

holds.

Proof. It is sufficient to show the equivalence (3.9) on a dense subspace of
H

1/2
00 (−1, 1). So let ψ be taken from H1

0 (−1, 1). Let us define the weighted norms

‖ψ‖2
L2

w(a,b) =

b∫
a

w |ψ|2 dy, ‖ψ‖2
H1

w1,w2
(a,b) =

b∫
a

w1 |∇ψ|2 dy +

b∫
a

w2 |ψ|2 dy

and let L2
w(a, b) and H1

0,w1,w2
(a, b) be the closures of C∞

0 (a, b) with respect to these
norms. By integral transformation it is easy to see that for w(y) := (sin y)−1

‖ψ‖L2(−1,1) = ‖ψ ◦ cos ‖L2
w−1(0,π), ‖ψ‖H1

0 (−1,1) = ‖ψ ◦ cos ‖H1
w,w−1 (0,π).

Therefore, the equivalence

(3.10) ‖ψ‖[L2(−1,1),H1
0(−1,1)]1/2

∼ ‖ψ ◦ cos ‖[L2
w−1(0,π),H1

w,w−1(0,π)]1/2

holds. By well-known interpolation results ([19, p. 277]), the weight functions w
and w−1 on the right-hand side extinguish each other:

(3.11) ‖ψ ◦ cos ‖[L2
w−1(0,π),H1

w,w−1(0,π)]1/2
∼ ‖ψ ◦ cos ‖

H
1/2
00 (0,π)

.

�

Corollary 3.4. On H
1/2
00 (−1, 1), the operator CGL,

(3.12) CGLψ(s) =
1

(1−s2)1/2 ((−∆Γi)
1/2(ψ ◦ cos) ◦ arccos)(s),

is spectrally equivalent to (−∆Γi)1/2.

Proof. Analogous to the proof of Corollary 3.2 we get

((−∆Γi)
1/2ψ, ψ)L2(−1,1) ∼ ((−∆Γi)

1/2(ψ ◦ cos), ψ ◦ cos)L2(0,π)

= (CGLψ, ψ)L2(−1,1).

�

As a discretization, we consequently use

(3.13) ChGLψ(s) =
1

(1−s2)1/2 (Ch(ψ ◦ cos) ◦ arccos)(s)

where Ch is a discretization of (−∆[−1,1])1/2 in accordance with Section 3.1. So up
to a weight function, we can use the equidistant mesh preconditioner Ch also on
the Gauss-Lobatto mesh, at least for Dirichlet conditions on ∂Ω ∩ Γi. A similar
proof for the case of Neumann conditions at Ω∩Γi seems difficult due to the lack of
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interpolation results for H1/2 comparable to (3.11) for H1/2
00 . However, numerical

results using

ChGL,Nmψ(s) := (1−s2)−1/2 (ChNm(ψ ◦ cos) ◦ arccos)(s)

show that this technique is also efficient in the Neumann case.
An application of this method to other (nonuniform boundary meshes) is possible

for Dirichlet conditions. For the generalization to the case σ > 0, see the remark
at the end of Section 3.2.

3.4. Possible generalizations to 3-dimensional problems. If Ω ⊂ R
3 and if

the interfaces Γi are squares (as is usually the case when spectral methods are used;
the Ωi are cuboids), the application of the ideas of the previous sections for the dis-
cretization of the preconditioner is straightforward. Even if the geometry is deviant
and spectral methods are used in combination with mappings onto squares/cubes,
the methods can be applied. The same is true for finite difference solvers if the
boundary data are given or can be mapped on a Cartesian mesh.

If the boundary values are given on an unstructured FE boundary mesh, it should
be possible to generalize the results of Section 3.1.2 by hierarchical bases/multigrid
methods [4].

4. A comparison of the condition number of CGBI and FETI

for a model problem

In Section 2.3 it was proven that the condition number κ of the operator CA
(and consequently, the convergence rate of CGBI) is only dependent on the norm
of the local trace and prolongation operators but is independent of the number of
subdomains and the size of the global domain. However, it seems worthwhile to
retrieve more explicit expressions for κ. These can be found if we restrict ourselves
to a simplified geometry. The same investigation can be done for FETI with the
so-called FETI Dirichlet preconditioner proposed in [9, 10]. Note that other pre-
conditioners, e.g., the one proposed by Klawonn and Widlund [12] coincide with
the classical Dirichlet preconditioner for the problems considered in this paper. We
should mention that a “cheap” interface-based preconditioner called the “lumped
preconditioner” was already proposed for FETI, but its performance was rather
unsatisfactory ([8, Tab. 1] and [10, p. 1967]).

As in Section 2, we use the setting of functional spaces. Note that the possibility
of using the nondiscretized operators also for the analysis of FETI is a consequence
of our restriction to domain decompositions without interior cross-points. In a more
general setting, the FETI condition number depends slightly on the discretization
parameter [17, 18].

4.1. Condition number for CGBI on a simply-shaped domain.

Theorem 4.1. Let Ω = (0, S)× (0, L), be a rectangle, let p be an even number and
let each subdomain Ωi, i = 1, . . . , p, be a rectangle of size S/p×L (cf. Figure 2,
top). Let us assume (i) Dirichlet or (ii) Neumann conditions on y = 0 and y = L
and periodic boundary conditions at x = 0 and x = S. Let us denote the subdomain
aspect ratio r = S/(pL). Then,
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Figure 2. Top: Definition of the subdomain aspect ratio r =
(S/p)/L. Bottom: Comparison of the convergence rate q (error
reduction per iteration step) for CGBI and FETI and the quotient
of both rates as a function of the subdomain aspect ratio r.

(a) the operator A (2.10) has the eigenvalues

µk,m =
2L√

σL2 + π2k2

cosh r
√
σL2 + π2k2 − cos 2πm

p

sinh r
√
σL2 + 2π2k2

, m = 0, . . . ,
p

2
, k ∈ N;

(b) the preconditioned operator C1/2AC1/2 with C = (σI − ∆Γ)1/2 in case (i)
and C = (σI − ∆ΓNm)1/2 in case (ii) has the eigenvalues

(4.1) λk,m = 2
cosh r

√
σL2 + π2k2 − cos 2πm

p

sinh r
√
σL2 + π2k2

, m = 0, . . . ,
p

2
, k ∈ N;

(c) for the condition number the equality

(4.2) κ(C1/2AC1/2) =
cosh(r

√
σL2 + π2) + 1

cosh(r
√
σL2 + π2) − 1

=
2

cosh(r
√
σL2 + π2) − 1

+ 1

holds which can be estimated by

(4.3) κ ≤ 2
cosh(rπ) − 1

+ 1;

d) the condition number has the following asymptotic behavior:
For fixed σ∈ [0,∞), lim

r→∞κ = 1, and for r −→ 0, κ = O(r−2);

for fixed r∈(0,∞), κ is decaying monotonically for σ → ∞, and lim
σ→∞ κ = 1.
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Proof. We consider the boundary at x = S, x = 0 as an interface Γp between Ωp
and Ω1. For short let us set

K = r
√
σL2 + π2k2,

di = sin
2πim
p

, si =
sin 2π(i+1)m

p −sin 2πim
p coshK

sinhK ,

d̄i = cos
2πim
p

, s̄i =
cos 2π(i+1)m

p −cos 2πim
p coshK

sinhK , i = 1, . . . , p.(4.4)

(a) Let us define ϕk,m, ϕ̄k,m : Γ → R by

ϕk,m|Γi = di sin
πky

L
, ϕ̄k,m|Γi = d̄i sin

πky

L
,

y ∈ (0, L), for boundary condition (i) and

ϕk,m|Γi = di cos
πky

L
, ϕ̄k,m|Γi = d̄i cos

πky

L

for boundary condition (ii). We will prove that ϕk,m for m = 1, . . . , p/2 − 1 and
ϕ̄k,m for m = 0, . . . , p/2 are eigenfunctions of A, i.e.,

(4.5) [v(ϕk,m)] = µk,mϕk,m, [v(ϕ̄k,m)] = µk,mϕ̄k,m.

Let us focus on case (i).
Obviously, the functions vk,m = (v1

k,m, . . . , v
p
k,m) and v̄k,m = (v̄1

k,m, . . . , v̄
p
k,m),

where

vik,m(x, y) =
(
K

rL

)−1

(di−1 sinh
xK

rL
+ si−1 cosh

xK

rL
) sin

πky

L
,

v̄ik,m(x, y) =
(
K

rL

)−1

(d̄i−1 sinh
xK

rL
+ s̄i−1 cosh

xK

rL
) sin

πky

L
,

are solutions of (σI − ∆)vi = 0 on Ωi for arbitrary di−1, si−1 ∈ R. Let us identify
Ωi = (0, rL)× (0, L). It is easy to check that for di, si, d̄i, s̄i from (4.4), each vik,m,
v̄ik,m also meets the boundary conditions of problem (2.6) with interface boundary
condition ϕ = ϕk,m, ϕ = ϕ̄k,m, respectively. A computation of the jumps [v(ϕk,m)],
[v(ϕ̄k,m)] shows that (4.5) holds.

(b) The functions ϕk,m, ϕk,m defined in the proof of (a) are obviously also eigen-

functions of C, and the corresponding eigenvalues are µ̃k,m =
√
σ + π2k2

L2 . Hence,

the ϕk,m are also eigenfunctions of C1/2AC1/2 and (4.1) follows.
(c) (4.1) takes its maximum (minimum) value for m = p/2, k = 1 (m = 0, k = 1).

κ(C1/2AC1/2) = λ1,p/2/λ1,0 yields (4.2).
(4.3) follows from the monotonicity of the right-hand side of (4.2) considered as

a function of σ.
(d) A series expansion of the cosh in the right-hand side of (4.2) shows κ =

O(r−2) for r → 0. The behavior for r → ∞ and for σ → ∞ is obvious. �

4.2. Condition number for FETI on a simply-shaped domain. Let us con-
sider now the condition number of FETI for the same simply-shaped domain with
the same substructuring as in Theorem 4.1 with boundary conditions (i). As there
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are no interior cross-points, FETI simplifies to solve the same problem [v(ϕ)] =
−[w];7 i.e., in the setting of functional spaces, the operator of FETI coincides with
the CGBI operator A. The difference lies in the preconditioning. The most usual
FETI preconditioner for our problem is based on the solution of the Dirichlet prob-
lem

Lṽi = 0 in Ωi,
ṽi = ψi−1 on Γi−1,

ṽi = ψi on Γi,
ṽi = 0 on ∂Ωi ∩ ∂Ω.(4.6)

The preconditioner (which is called the Dirichlet preconditioner [9]) is the map-
ping of a ψ ∈ H

1/2
00 (Γ) to the jump of the Neumann trace [ṽ(ψ)]Nm defined by

[ṽ(ψ)]Nm|Γi = ∂ṽi(ψ)/∂νi − ∂ṽi+1(ψ)/∂νi. Let us denote this preconditioner by
CFETI .
Theorem 4.2. Under the assumptions of Theorem 4.1 the condition number
κ(C1/2

FETIACFETI) of the nondiscretized FETI method with the Dirichlet precon-
ditioner is equal to the square of the CGBI condition number κ(C1/2AC1/2).

Proof. Let di, si, d̄i, s̄i be defined as in the proof of Theorem 4.1. Similar to the
proof of Theorem 4.1(a) one sees that ψk,m for m = 1, . . . , p/2−1 and ψ̄k,m for m =
0, . . . , p/2 with ψk,m|Γi = di sin πky

L , ψ̄k,m|Γi = d̄i sin πky
L are eigenfunctions of the

operator CFETI for case (i): To check this, one uses the fact that the corresponding
solutions ṽ(ψk,m), ṽ(ψ̄k,m) of problem (4.6) are

ṽi(ψk,m) = (si−1 sinh
xK

rL
+ di−1 cosh

xK

rL
) sin

kπy

L
,

ṽi(ψ̄k,m) = (s̄i−1 sinh
xK

rL
+ d̄i−1 cosh

xK

rL
) sin

kπy

L

on Ωi, Ωi identified with (0, rL) × (0, L). The corresponding Neumann jumps
[ṽ(ψk,m)]Nm, [ṽ(ψ̄k,m)]Nm are equal to µFETIk,m ψk,m, µFETIk,m ψ̄k,m, respectively. So
the eigenvalues of CFETI are

µFETIk,m =
2
√
σL2 + π2k2

L

cosh r
√
σL2 + π2k2 − cos 2πm

p

sinh r
√
σB2 + π2k2

, m = 0, . . . ,
p

2
, k ∈ N.

Since the eigenspaces of A and CFETI coincide, the eigenvalues of the operator
C1/2
FETIAC1/2

FETI are

λFETIk,m = µk,m µ
FETI
k,m = 4

(cosh r
√
σL2 + π2k2 − cos πmp

sinh r
√
σB2 + 2π2k2

)2

,

and the condition number is

�(4.7) κ(C1/2
FETIAC1/2

FETI) =
(

cosh r
√
σL2 + π2 + 1

cosh r
√
σL2 + π2 − 1

)2

= κ(C1/2AC1/2)2.

7In the FETI community, the Neumann interface condition ϕ is usually considered as a La-
grangian multiplier for a constrained minimization problem [8].
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Let us consider the CGBI condition number κ in (4.2) and the FETI condition
number (4.7) as a function of r (σ = 0). If we assume the asymptotic CG error
reduction rate q to be q = (

√
κ − 1)/(

√
κ + 1), Figure 2 shows the resulting error

reduction rate q as a function of r. So the CGBI error reduction rate for the model
problem appears to be significantly smaller than that of the preconditioned FETI
method. More precisely, the quotient of the convergence rate is about 1/2 for r not
too small. The deterioration of the convergence rates for r → 0 is worse for FETI
than for CGBI.

Remark 4.3 (The choice of boundary conditions). In Theorem 4.1, similar results
for Neumann and for Dirichlet instead of periodic conditions at x = 0, x = S and
arbitrary p ≥ 2 can be proved ([13, p. 74 ff.]). In Theorem 4.2, the eigenspaces of
A and of CFETI differ under those boundary conditions, making an analysis more
difficult.

5. Numerical results

In the following we will verify the theoretical results of the previous chapters by
numerical results. We will use the simple geometry of Theorem 4.1 with quadratic
subdomains (r = 1), Dirichlet conditions on ∂Ω and σ = 0. Some numerical results
for different σ, r and Neumann conditions can be found in [13].

Figure 3 shows the convergence of CGBI for the Poisson equation on a domain
Ω = (0, 8) × (0, 1) divided into 8 quadratic subdomains. An FE solver (linear el-
ements) on a regular mesh with 512 × 512 nodes per subdomain was used. The
right-hand side of the problem was chosen such that the solution is in C∞(Ω̄). In
order to reveal the worst-case behavior of CGBI, the CG iteration was started with
a (piecewise linear) ϕ with nodal values which were chosen at random between ±1.
The diagrams show the H1-error (with respect to each subdomain), the L2(Ω)-,
L∞(Ω)-error for v(ϕ), and the H−1/2(Γ)-error for ϕ. As the theory of CG pre-
dicts, we see a monotonous decay for the H1-norm. Furthermore, we observe that
the H−1/2(Γ)-error for ϕ is very close, which indicates that the constants c1, c2 in
(2.13)–(2.16) are not far from 1, a fact that was already predicted by Theorem 4.1.
The bottom part of Figure 3 demonstrates the efficiency of the spectral precondi-
tioner proposed in Section 3.1.1: The preconditioned CGBI only needs 3 iteration
steps to reduce the error by 10−4, and 4 iteration steps instead of about 60 for
the unpreconditioned to reach the finite element accuracy of a sequential solver.
In order to make a comparison to earlier computational results for FETI, we also
compute the residual: CGBI requires only 5 iteration steps to reduce the L2(Ω)-
residual by at least 10−6 (see Table 1). Note the close coincidence of the mean error
reduction rate of Table 1 with the theoretical result of Figure 2 at r=1. FETI with
the Dirichlet preconditioner on the same geometry requires 9–11 iteration steps for
the same reduction of the residual ([9, Chapter 4.2]). The fact that CGBI needs
fewer iteration steps for this problem was also predicted in Section 4.2 (Figure 2,
bottom). The cpu time for the CGBI preconditioning covers about 1% of the com-
putational time of the unpreconditioned CGBI, while the Dirichlet preconditioner
should require (for large N) almost 100% (about 80% for an example given in [10,
p. 1967] of the computational time of the unpreconditioned FETI).

In Figure 4 the same problem with the same domain decomposition is computed
for different values for the discretization parameter N (N ×N being the degrees of
freedom on each subdomain). For unpreconditioned CGBI, the number of iteration
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Figure 3. Convergence of CGBI in different norms. Horizontal
axis: Number of iteration step. Domain Ω = (0, 8)× (0, 1) divided
into 8 quadratic subdomains. FE solver on subdomains, regular
mesh with 512× 512 nodes per subdomain. Top: Without precon-
ditioning. Bottom: With spectral preconditioner (Section 3.1.1)

.

steps depends strongly on N . For the spectral preconditioner, three iteration steps
are sufficient.

Table 1. Relative residual of equation (1.1) with respect to the
L2(Ω)-norm after 5 CGBI steps (preconditioned) and mean reduc-
tion of the residual per CGBI step. After 5 steps, the residual is
reduced by more than 10−6. Quadratic subdomains (r=1).

p N rel. residual mean red.
after 5 steps per step

2 64 8.33E-12 0.006
4 64 7.68E-11 0.009
6 64 3.11E-9 0.020
8 64 1.70E-7 0.044

32 64 1.53E-7 0.043
128 64 1.52E-7 0.043

p N rel. residual mean red.
after 5 steps per step

8 16 1.79E-7 0.044
8 64 1.70E-7 0.044
8 256 1.69E-7 0.044
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Figure 4. Convergence of CGBI with respect to H1(Ω)-norm for
different discretization parameters N . All data as in Figure 3.
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Figure 5. The spectral preconditioner on Chebyshev–Gauss–
Lobatto boundary mesh. Poisson equation on six spectral sub-
domains. L∞(Ω)-error in dependence of the CGBI step. Different
discretization parameters N .

Figure 5 shows the convergence of CGBI for 4 subdomains with the spectral
collocation Chebyshev solver on each subdomain. Since the boundary mesh on
the interfaces is a Chebyshev–Gauss–Lobatto mesh, we use the preconditioner ChGL
(3.13). Since the derivation of this preconditioner requires the use of the equivalence
(3.11), the condition number increases by the ratio of the equivalence constants in
(3.11). Therefore we can observe that the convergence speed for ChGL is slightly
lower than that of Ch on an equidistant boundary mesh (Figure 4). However, it is
still about one power of 10 per CG step, and it is still independent of N .

Figure 6 shows a comparison of different discretizations of the preconditioner
CGL for a Chebyshev–Gauss–Lobatto mesh. The figure shows the performance
of the transformation (3.13) together with the discretization Ch (spectral), CM
(multidiagonal), Ctri (tridiagonal), respectively (Section 3.1). Among these, the



1252 S. KRÄUTLE
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Figure 6. L2(Ω)-CGBI convergence rate for different precondi-
tioners on Chebyshev–Gauss–Lobatto boundary mesh. Six spec-
tral subdomains, N = 64.

spectral version performs best with an error reduction of one power of 10 per CG
step. Another preconditioner especially optimized for Gauss–Lobatto boundary
meshes will be proposed in a forthcoming paper.

6. Conclusion and outlook

CGBI turned out to be an efficient algorithm for domain decomposition without
interior cross-points. The CGBI interface preconditioners cause negligible compu-
tational costs. Nevertheless, even smaller condition numbers than for the Dirichlet-
preconditioned FETI method could be observed, making CGBI an efficient tool for
computations on domains with large aspect ratio.

The efficient application of interface preconditioners for the more general case
of domain decomposition with interior cross-points is presently an open question.
However, first computational results for this situation are promising: For CGBI
on domain decompositions with interior cross-points we found a reduction of the
residual of about 10−6 within 18 iteration steps.8 Hence, the convergence rate is
at least not worse than that of the FETI method in [9, Chapter 4.2], while the
computational costs of the boundary preconditioner are much lower than that of a
Dirichlet preconditioner.

Other possible extensions of the applicability of CGBI (even without inner cross-
points) could be the construction of discretizations of the interface preconditioners
for complex 3-dimensional problems, like channel systems with bifurcations, where
the domains and the interfaces are discretized by unstructured finite element meshes
(Section 3.4).

8A checkerboard domain decomposition into p × p subdomains, p = 4, 8, 16, 32, and 16×16
nodes per subdomain were used.
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Appendix

Since the author could not find a proof of Lemma 2.1 (which is a slight general-
ization of the well-known trace theorem) in the literature, a proof is given here:

Proof. For σ=0, Ti and Pσ,i are continuous operators, which is a consequence of the
well-known trace theorem and the Poincaré inequalities in {u∈H1(Ωi) |u|∂Ωi\Γi

=
0}, H1/2

00 (Γi). Therefore it is sufficient to prove the statement of Lemma 2.1 for
σ∈(0,∞).

In Part 1 of the following proof we consider the situation of a half space. In
Part 2 we generalize the results to Ωi being a cuboid. A further generalization
to bounded domains with Lipschitz boundary can be obtained by the technique of
local maps.

Part 1: First let us consider the situation of a half space Ω = {x1> 0}×R
n−1,

Γ = ∂Ω = {x1 =0}×R
n−1.

(a) For σ∈ (0,∞) and both for functions u∈H1(Ω) and u∈H1/2(Γ) we define
ũ(x) = u(σ−1/2x). The (semi-)norms of u scale as follows:

‖ũ‖2
L2(Ω) = σ

n
2 ‖u‖2

L2(Ω), ‖∇ũ‖2
L2(Ω) = σ

n−2
2 ‖∇u‖2

L2(Ω),

‖ũ‖2
L2(Γ) = σ

n−1
2 ‖u‖2

L2(Γ), ‖(−∆Γ)1/4ũ‖2
L2(Γ) = σ

n−2
2 ‖(−∆Γ)1/4u‖2

L2(Γ).

Let T : H1(Ω) → H1/2(Γ) be the well-known trace operator. Obviously (Tu)̃ = T ũ
holds. Using the representation (2.3) of the norm ‖ · ‖σ, 12 ,Γ and the scaling of the
(semi-)norms of Tu, we obtain

‖Tu‖2
σ,12 ,Γ

∼ σ
1
2 ‖Tu‖2

L2(Γ) + ‖(−∆Γ)1/4Tu‖2
L2(Γ)

= σ1−n
2 (‖(Tu)̃ ‖2

L2(Γ) + ‖(−∆Γ)1/4(Tu)̃ ‖2
L2(Γ))

= σ1−n
2 (‖T ũ‖2

L2(Γ) + ‖(−∆Γ)1/4T ũ‖2
L2(Γ)).

We proceed by using the well-known Trace Theorem (σ=1) and by using the norm
scaling again:

‖Tu‖2
σ,12 ,Γ

≤ c σ1−n
2 (‖ũ‖2

L2(Ω) + ‖∇ũ‖2
L2(Ω)) = c (σ ‖u‖2

L2(Ω) + ‖∇u‖2
L2(Ω))

where c, being the operator norm of T with respect to H1(Ω), H1/2(Γ), is indepen-
dent of σ.

(b) Let us define the extension operator Pσ : H1/2(Γ) → H1(Ω) by Pσu(x) =
(P ũ)(σ1/2x), where P is a continuous extension operator in the case σ = 1. The
estimate of the operator norm of Pσ with respect to the norms ‖ · ‖σ,1,Ω, ‖ · ‖σ,1/2,Γ
is analogous to the estimate of T :

‖Pσu‖2
σ,1,Ω ∼ σ ‖Pσu‖2

L2(Ω) + ‖∇Pσu‖2
L2(Ω)

= σ
2−n

2 (‖P ũ‖2
L2(Ω) + ‖∇P ũ‖2

L2(Ω))

≤ c σ
2−n

2 (‖ũ‖2
L2(Γ) + ‖(−∆Γ)1/4ũ‖2

L2(Γ))

= c (σ
1
2 ‖u‖2

L2(Γ) + ‖(−∆Γ)1/4u‖2
L2(Γ))

where c, the norm of P , is independent of σ.
Part 2: Generalization to the case where Ωi = (0, a1)× · · · × (0, an) ⊂ R

n

is a cuboid and Γi = {0}× (0, a2)× · · · × (0, an) is one face of Ωi and Γi−1 =
{a1}×(0, a2)× · · · ×(0, an) is another face:
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(a) The continuity of the trace operator T : H1
i,∂Ω → H

1/2
00 (Γi) with respect to

the norms ‖ · ‖σ,1,Ωi , ‖ · ‖σ,1/2,Γi
, uniform with respect to σ, is obtained as follows:

Let us assume σ≥1 at first. It is sufficient to consider T restricted to the space
{u∈H1(Ωi) |u|∂Ωi\Γi

= 0} ⊂ H1
i,∂Ω: If u∈H1

i,∂Ωi
restricted to Γi−1 is different from

zero, we can define u∗(x1, . . . , xn) = (1−x1/a1)u(x1, . . . , xn) having the same trace
on Γi as u. Since σ≥1, one can easily estimate ‖u∗‖σ,1,Ωi ≤ c ‖u‖σ,1,Ωi with a c>0
independent of σ. It remains to estimate Tu = Tu∗ by u∗.

Hence, let u∈H1(Ωi) be given with u|∂Ωi\Γi
= 0. We can extend u by zero to

a function defined on the half space {x1>0}×R
n−1. Let us denote this extension

again by u. We apply the trace operator T from Part 1 of the proof to the extended
u; Tu ∈H1/2(Rn−1) has compact support in Γi, then. For the estimation of the
restriction RTu∈H1/2(Γi) of Tu, we use the norm equivalence

‖v‖
H

1/2
00 (Γi)

∼ ‖v‖H1/2(Rn−1) ∀ v∈H1/2(Rn−1), v|Rn−1\Γi
= 0,

which can be deduced from the norm representation

‖v‖2

H
1/2
00 (Γi)

∼ ‖v‖2
H1/2(Γi)

+
∫
Γi

|v(x)|2
dist(x, ∂Γi)

dx

([14, Chap. 1 (11.53)]). From the norm equivalence we obtain

‖RTu‖2

H
1/2
00 (Γi)

≤ c ‖Tu‖2
H1/2(Rn−1).

Together with the trivial equality

σ
1
2 ‖RTu‖2

L2(Γi)
= σ

1
2 ‖Tu‖2

L2(Rn−1),

the estimate

‖RTu‖2
σ,12 ,Γi

≤ c ‖Tu‖2
H1/2(Rn−1) + σ

1
2 ‖Tu‖2

L2(Rn−1)

= c ‖(−∆Rn−1)1/4Tu‖2
L2(Rn−1) + (c+ σ

1
2 )‖Tu‖2

L2(Rn−1)

≤ max{c, c σ−1/2+1} ‖Tu‖σ,12 ,Rn−1 ≤ c ‖Tu‖σ,12 ,Rn−1

follows with c independent of σ, where the last step is valid for σ ≥ 1 and c is
generic. ‖Tu‖σ,12 ,Rn−1 ≤ c ‖u‖σ,1,Ωi, c independent of σ, follows from Part 1 of the
proof. Altogether, ‖RTu‖σ,12 ,Γi

≤ c ‖u‖σ,1,Ωi follows.
The case σ<1 is handled as follows: For u∈H1

i,∂Ω,

‖Tu‖σ,12 ,Γi
≤ ‖Tu‖

H
1/2
00 (Γi)

≤ c ‖u‖H1(Ωi) ≤ c ‖∇u‖L2(Ωi) ≤ c ‖u‖σ,1,Ωi,

where the ordinary trace theorem (σ=1) was used in the second step and a Poincaré
inequality was used in the third step.

The generalization of part (b) of the lemma from the half-space situation to the
cuboid geometry is obtained as follows:

Let O be an open neighborhood of Γi and let Φ ∈ W 1,∞(O) be a Lipschitz-
continuous bijective mapping of O to a bounded subset M⊂R

n such that O ∩ ∂Ωi
is mapped to M ∩ {x1 = 0}×R

n−1, O ∩ Ωi is mapped to M ∩ {x1 > 0}×R
n−1,

and such that this mapping, restricted to Γi, is the identity. Let ψ be a smooth
function with compact support in O and 0≤ψ≤1 on O and ψ=1 on Γi. We will
construct an extension operator Pσ,i : H1/2

00 (Γi) → H1(Ω), (Pσ,iu)|∂Ωi\Γi
= 0, with

norm bounded uniform with respect to σ:
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A given function u ∈ H
1/2
00 (Γi) can be continuously extended by zero to a function

in {x1 = 0} × R
n−1 (see norm equivalences in part (a). The extension is again

denoted by u. Then, the extension operator Pσ from Part 1 of the proof can be
applied. We define the extension operator Pσ,i by (Pσ,iu)(x) = ψ(x)Pσu(Φ(x)),
x∈O∩Ωi, for all σ ≥ σ0 = maxx∈O |∇ψ|2, Pσ from Part 1. Obviously, the support
of Pσ,iu is contained in O ∩ Ωi, (Pσ,iu)|Γi = u and (Pσ,iu)|∂Ωi\Γi

= 0. We have to
check the continuity of Pσ,i, uniform with respect to σ:

‖Pσ,iu‖2
σ,1,Ωi

= σ ‖ψ (Pσu)◦ Φ‖2
L2(O∩Ωi)

+ ‖∇(ψ (Pσu)◦ Φ)‖2
L2(O∩Ωi)

≤ σ ‖(Pσu)◦Φ‖2
L2(O∩Ωi)

+ 2‖(Pσu)◦Φ∇ψ‖2
L2(O∩Ωi)

+ 2‖ψ∇(Pσu ◦ Φ)‖2
L2(O∩Ωi)

.

Since |ψ|≤1, |∇ψ| ≤ √
σ0 ≤ √

σ on O, we obtain

‖Pσ,iu‖2
σ,1,Ωi

≤ 3σ ‖(Pσu)◦Φ‖2
L2(O∩Ωi)

+ 2‖∇((Pσu)◦Φ)‖2
L2(O∩Ωi)

≤ c1 (σ ‖Pσu‖2
L2(M∩Ω) + ‖∇(Pσu)‖2

L2(M∩Ω))

≤ c1 (σ ‖Pσu‖2
L2(Ω) + ‖∇(Pσu)‖2

L2(Ω))

≤ c1 c2 (
√
σ ‖u‖2

L2(Γi)
+ ‖(−∆Γi)

1/4u‖2
L2(Γi)

)

where c1 depends on Φ and c2 is the bound for Pσ from Part 1.
It remains to handle the case σ < σ0. For all σ < σ0 we define Pσ,iu for u ∈

H
1/2
00 (Γi) to be the ordinary extension operator P : H1/2

00 (∂Ωi) → H1(Ω), applied
to u after extension by zero to ∂Ωi\Γi. Using the continuity of P and a Poincaré
inequality in H1/2

00 (Γi), we get

‖Pσ,iu‖2
σ,1,Ωi

= ‖Pu‖2
σ,1,Ωi

≤ max{σ, 1} ‖Pu‖2
H1(Ωi)

≤ c max{σ0, 1} ‖u‖2

H
1/2
00 (Γi)

≤ c max{σ0, 1} ‖(−∆Γi)
1/4u‖2

L2(Γi)

≤ c max{σ0, 1} ‖u‖2
σ,1/2,Γi

where c is generic and independend of σ.
Part 3: The generalization to domains of more general shape works like the usual

generalization of the well-known trace theorem by application of local maps. �
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