A domain decomposition method using efficient interface-acting preconditioners
Author:
Serge Kräutle
Journal:
Math. Comp. 74 (2005), 1231-1256
MSC (2000):
Primary 65N55; Secondary 65Y05, 65M70, 35J05
DOI:
https://doi.org/10.1090/S0025-5718-04-01706-5
Published electronically:
September 17, 2004
MathSciNet review:
2137001
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The conjugate gradient boundary iteration (CGBI) is a domain decomposition method for symmetric elliptic problems on domains with large aspect ratio. High efficiency is reached by the construction of preconditioners that are acting only on the subdomain interfaces. The theoretical derivation of the method and some numerical results revealing a convergence rate of 0.04–0.1 per iteration step are given in this article. For the solution of the local subdomain problems, both finite element (FE) and spectral Chebyshev methods are considered.
- Ernst Heinrich Hirschel (ed.), Flow simulation with high-performance computers. II, Notes on Numerical Fluid Mechanics, vol. 52, Friedr. Vieweg & Sohn, Braunschweig, 1996. DFG Priority Research Programme results 1993–1995. MR 1727107
- W. Borchers, M. Y. Forestier, S. Kräutle, R. Pasquetti, R. Peyret, R. Rautmann, N. Roß, and C. Sabbah, A parallel hybrid highly accurate elliptic solver for viscous flow problems, Numerical flow simulation, I (Marseille, 1997) Notes Numer. Fluid Mech., vol. 66, Friedr. Vieweg, Braunschweig, 1998, pp. 3–24. MR 1668776, DOI https://doi.org/10.1007/978-3-663-10916-7_1
- W. Borchers, S. Kräutle, R. Pasquetti, R. Peyret, R. Rautmann, Multi-domain Finite Element—Spectral Chebyshev Parallel Navier-Stokes Solver for Viscous Flow Problems, Numerical Flow Simulation III, Notes on Num. Fluid Mech. Vol. 82, Hirschel (ed.), pp. 3–17, Springer Verlag 2003.
- J. Bramble, J. Pasciak, J. Xu, Parallel multilevel preconditioners, Math. Comp., 55 (1990), pp. 1–22. MR1023042 (90k:65170)
- Susanne C. Brenner, The condition number of the Schur complement in domain decomposition, Numer. Math. 83 (1999), no. 2, 187–203. MR 1712684, DOI https://doi.org/10.1007/s002110050446
- Susanne C. Brenner and Li-Yeng Sung, Lower bounds for nonoverlapping domain decomposition preconditioners in two dimensions, Math. Comp. 69 (2000), no. 232, 1319–1339. MR 1710656, DOI https://doi.org/10.1090/S0025-5718-00-01236-9
- Claudio Canuto, M. Yousuff Hussaini, Alfio Quarteroni, and Thomas A. Zang, Spectral methods in fluid dynamics, Springer Series in Computational Physics, Springer-Verlag, New York, 1988. MR 917480
- C. Farhat, F.-X. Roux, A method of finite element tearing and interconnecting and its parallel solution algorithm, Int. J. Num. Methods Engin. 32, pp. 1205–1227 (1991).
- Charbel Farhat, Jan Mandel, and François-Xavier Roux, Optimal convergence properties of the FETI domain decomposition method, Comput. Methods Appl. Mech. Engrg. 115 (1994), no. 3-4, 365–385. MR 1285024, DOI https://doi.org/10.1016/0045-7825%2894%2990068-X
- C. Farhat, L. Crivelli, F.-X. Roux, A transient FETI methodology for large-scale parallel implicit computations in structural mechanics, Int. J. Numer. Methods Eng. 37 (1994), pp. 1945-1975.
- W. Guo, L.S. Hou, Generalizations and accelerations of Lions’ nonoverlapping domain decomposition method for linear elliptic PDE, SIAM J. Numer. Anal. 41 (2003), pp. 2056–2080.
- Axel Klawonn and Olof B. Widlund, FETI and Neumann-Neumann iterative substructuring methods: connections and new results, Comm. Pure Appl. Math. 54 (2001), no. 1, 57–90. MR 1787107, DOI https://doi.org/10.1002/1097-0312%28200101%2954%3A1%3C57%3A%3AAID-CPA3%3E3.0.CO%3B2-D
- S. Kräutle, A Navier-Stokes solver based on CGBI and the method of characteristics, Doctoral thesis, Erlangen, 2001. http://www.am.uni-erlangen.de/am1/publications/dipl_phd_thesis/ PhD_Kraeutle.ps.gz.
- J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I, Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth; Die Grundlehren der mathematischen Wissenschaften, Band 181. MR 0350177
- Jacques-Louis Lions and Olivier Pironneau, Overlapping domain decomposition of evolution operators, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), no. 10, 937–942 (English, with English and French summaries). MR 1771962, DOI https://doi.org/10.1016/S0764-4442%2800%2900295-0
- P.-L. Lions, On the Schwarz alternating method. III. A variant for nonoverlapping subdomains, Third International Symposium on Domain Decomposition Methods for Partial Differential Equations (Houston, TX, 1989) SIAM, Philadelphia, PA, 1990, pp. 202–223. MR 1064345
- Jan Mandel and Radek Tezaur, Convergence of a substructuring method with Lagrange multipliers, Numer. Math. 73 (1996), no. 4, 473–487. MR 1393176, DOI https://doi.org/10.1007/s002110050201
- Jan Mandel and Radek Tezaur, On the convergence of a dual-primal substructuring method, Numer. Math. 88 (2001), no. 3, 543–558. MR 1835470, DOI https://doi.org/10.1007/s211-001-8014-1
- H. Triebel, Interpolation theory, function spaces, differential operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. MR 500580
Retrieve articles in Mathematics of Computation with MSC (2000): 65N55, 65Y05, 65M70, 35J05
Retrieve articles in all journals with MSC (2000): 65N55, 65Y05, 65M70, 35J05
Additional Information
Serge Kräutle
Affiliation:
Institut für Angewandte Mathematik, Universität Erlangen-Nürnberg, Martensstrasse 3, 91054 Erlangen, Germany
Email:
kraeutle@am.uni-erlangen.de
Keywords:
Parallelization,
domain decomposition,
preconditioning,
FETI
Received by editor(s):
October 18, 2003
Received by editor(s) in revised form:
February 9, 2004
Published electronically:
September 17, 2004
Additional Notes:
This work was supported by the Deutsche Forschungsgemeinschaft (DFG) and the Centre National de la Recherche Scientifique (CNRS)
Article copyright:
© Copyright 2004
American Mathematical Society