Computing the tight closure in dimension two
HTML articles powered by AMS MathViewer
- by Holger Brenner;
- Math. Comp. 74 (2005), 1495-1518
- DOI: https://doi.org/10.1090/S0025-5718-05-01730-8
- Published electronically: January 27, 2005
- PDF | Request permission
Abstract:
We study computational aspects of the tight closure of a homogeneous primary ideal in a two-dimensional normal standard-graded domain. We show how to use slope criteria for the sheaf of relations for generators of the ideal to compute its tight closure. In particular, our method gives an algorithm to compute the tight closure of three elements under the condition that we are able to compute the Harder-Narasimhan filtration. We apply this to the computation of $(x^{a},y^{a},z^{a})^*$ in $K[x,y,z]/(F)$, where $F$ is a homogeneous polynomial.References
- Holger Brenner, Tight closure and projective bundles, J. Algebra 265 (2003), no. 1, 45–78. MR 1984899, DOI 10.1016/S0021-8693(03)00222-9
- Holger Brenner, Slopes of vector bundles on projective curves and applications to tight closure problems, Trans. Amer. Math. Soc. 356 (2004), no. 1, 371–392. MR 2020037, DOI 10.1090/S0002-9947-03-03391-9
- David Gieseker, $p$-ample bundles and their Chern classes, Nagoya Math. J. 43 (1971), 91–116. MR 296078
- A. Grothendieck, Éléments de géométrie algébrique. I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math. 4 (1960), 228 (French). MR 217083
- Nobuo Hara, A characterization of rational singularities in terms of injectivity of Frobenius maps, Amer. J. Math. 120 (1998), no. 5, 981–996. MR 1646049
- G. Harder and M. S. Narasimhan, On the cohomology groups of moduli spaces of vector bundles on curves, Math. Ann. 212 (1974/75), 215–248. MR 364254, DOI 10.1007/BF01357141
- Robin Hartshorne, Ample vector bundles, Inst. Hautes Études Sci. Publ. Math. 29 (1966), 63–94. MR 193092
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 463157
- Melvin Hochster, Solid closure, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992) Contemp. Math., vol. 159, Amer. Math. Soc., Providence, RI, 1994, pp. 103–172. MR 1266182, DOI 10.1090/conm/159/01508
- Melvin Hochster and Craig Huneke, Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), no. 1, 31–116. MR 1017784, DOI 10.1090/S0894-0347-1990-1017784-6
- Craig Huneke, Tight closure and its applications, CBMS Regional Conference Series in Mathematics, vol. 88, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1996. With an appendix by Melvin Hochster. MR 1377268, DOI 10.1016/0167-4889(95)00136-0
- Craig Huneke, Tight closure, parameter ideals, and geometry, Six lectures on commutative algebra (Bellaterra, 1996) Progr. Math., vol. 166, Birkhäuser, Basel, 1998, pp. 187–239. MR 1648666
- Craig Huneke and Karen E. Smith, Tight closure and the Kodaira vanishing theorem, J. Reine Angew. Math. 484 (1997), 127–152. MR 1437301
- Daniel Huybrechts and Manfred Lehn, The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Friedr. Vieweg & Sohn, Braunschweig, 1997. MR 1450870, DOI 10.1007/978-3-663-11624-0
- R. Lazarsfeld, Positivity in Algebraic Geometry (Preliminary Draft), 2001.
- G. J. Leuschke, Appendix: Some examples in tight closure, Trends in Commutative Algebra, MSRI publications, 51, 2004.
- Luca Migliorini, Some observations on cohomologically $p$-ample bundles, Ann. Mat. Pura Appl. (4) 164 (1993), 89–102 (English, with Italian summary). MR 1243950, DOI 10.1007/BF01759316
- Yoichi Miyaoka, The Chern classes and Kodaira dimension of a minimal variety, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 449–476. MR 946247, DOI 10.2969/aspm/01010449
- M. Katzman, Gröbner bases and the Frobenius map, preprint, http://www.sheffield. ac.uk/katzman/Articles/Publications.html.
- Anurag K. Singh, A computation of tight closure in diagonal hypersurfaces, J. Algebra 203 (1998), no. 2, 579–589. MR 1622811, DOI 10.1006/jabr.1997.7350
- Karen E. Smith, Tight closure in graded rings, J. Math. Kyoto Univ. 37 (1997), no. 1, 35–53. MR 1447362, DOI 10.1215/kjm/1250518397
- Karen E. Smith, An introduction to tight closure, Geometric and combinatorial aspects of commutative algebra (Messina, 1999) Lecture Notes in Pure and Appl. Math., vol. 217, Dekker, New York, 2001, pp. 353–377. MR 1824242
- S. Sullivant, Tight closure of monomial ideals in Fermat rings, preprint, 2002.
Bibliographic Information
- Holger Brenner
- Affiliation: Department of Pure Mathematics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, United Kingdom
- MR Author ID: 322383
- Email: H.Brenner@sheffield.ac.uk
- Received by editor(s): March 10, 2003
- Received by editor(s) in revised form: April 11, 2004
- Published electronically: January 27, 2005
- © Copyright 2005 American Mathematical Society
- Journal: Math. Comp. 74 (2005), 1495-1518
- MSC (2000): Primary 13A35; Secondary 14H60
- DOI: https://doi.org/10.1090/S0025-5718-05-01730-8
- MathSciNet review: 2137014