Sharpening “Primes is in P” for a large family of numbers
HTML articles powered by AMS MathViewer
- by Pedro Berrizbeitia;
- Math. Comp. 74 (2005), 2043-2059
- DOI: https://doi.org/10.1090/S0025-5718-05-01727-8
- Published electronically: April 11, 2005
- PDF | Request permission
Abstract:
We present algorithms that are deterministic primality tests for a large family of integers, namely, integers $n \equiv 1\pmod 4$ for which an integer $a$ is given such that the Jacobi symbol $(\frac {a}{n})= -1$, and integers $n \equiv {-1} \pmod 4$ for which an integer $a$ is given such that $(\frac {a}{n})= (\frac {1-a}{n})=-1$. The algorithms we present run in $2^{-\min (k,[2 \log \log n])} \tilde {O}((\log n)^6)$ time, where $k = \nu _2(n-1)$ is the exact power of $2$ dividing $n-1$ when $n \equiv 1\pmod 4$ and $k = \nu _2(n+1)$ if $n \equiv \ -1\pmod 4$. The complexity of our algorithms improves up to $\tilde {O}((\log n)^4)$ when $k \geq [2 \log \log n]$. We also give tests for a more general family of numbers and study their complexity.References
- Leonard M. Adleman and Ming-Deh A. Huang, Primality testing and abelian varieties over finite fields, Lecture Notes in Mathematics, vol. 1512, Springer-Verlag, Berlin, 1992. MR 1176511, DOI 10.1007/BFb0090185
- Leonard M. Adleman, Carl Pomerance, and Robert S. Rumely, On distinguishing prime numbers from composite numbers, Ann. of Math. (2) 117 (1983), no. 1, 173–206. MR 683806, DOI 10.2307/2006975
- M. Agrawal, N. Kayal, and N. Saxena, Primes is in P, preprint, August 2002, posted in http://www.cse.iitk.ac.in/news/primality.html
- A. O. L. Atkin. Lecture notes of a conference, Boulder (Colorado). Manuscript, August 1986.
- Daniel J. Bernstein, An Exposition of the Agrawal-Kayal-Saxena Primality-Proving Theorem, preprint, August 2002, posted in http://cr.yp.to/papers.html\#aks
- Pedro Berrizbeitia and T. G. Berry, Biquadratic reciprocity and a Lucasian primality test, Math. Comp. 73 (2004), no. 247, 1559–1564. MR 2047101, DOI 10.1090/S0025-5718-03-01575-8
- Pedro Berrizbeitia, T. G. Berry, and Juan Tena-Ayuso, A generalization of Proth’s theorem, Acta Arith. 110 (2003), no. 2, 107–115. MR 2008078, DOI 10.4064/aa110-2-1
- H. Cohen and H. W. Lenstra Jr., Primality testing and Jacobi sums, Math. Comp. 42 (1984), no. 165, 297–330. MR 726006, DOI 10.1090/S0025-5718-1984-0726006-X
- Richard Crandall and Carl Pomerance, Prime numbers, Springer-Verlag, New York, 2001. A computational perspective. MR 1821158, DOI 10.1007/978-1-4684-9316-0
- William Feller, An Introduction to Probability Theory and Its Applications. Vol. I, John Wiley & Sons, Inc., New York, 1950. MR 38583
- S. Goldwasser and J. Kilian. Almost all primes can be quickly certified. Proceedings of Annual IEEE Symposium on Foundations of Computer Science, pages 316-329, 1986.
- Kenneth Ireland and Michael Rosen, A classical introduction to modern number theory, 2nd ed., Graduate Texts in Mathematics, vol. 84, Springer-Verlag, New York, 1990. MR 1070716, DOI 10.1007/978-1-4757-2103-4
- Sergei Konyagin and Carl Pomerance, On primes recognizable in deterministic polynomial time, The mathematics of Paul Erdős, I, Algorithms Combin., vol. 13, Springer, Berlin, 1997, pp. 176–198. MR 1425185, DOI 10.1007/978-3-642-60408-9_{1}5
- H. W. Lenstra Jr., Divisors in residue classes, Math. Comp. 42 (1984), no. 165, 331–340. MR 726007, DOI 10.1090/S0025-5718-1984-0726007-1
- E. Lucas. Sur la recherche des grands nombres premiers. Assoc. Francaise p. l’Avanc. des Science. Comptes Rendus, 5:61-68, 1876.
- F. Proth. Théorèmes sur les nombres premiers. Comptes Rendus Acad. des Sciences, Paris 87:926, 1878.
- B. L. van der Waerden, Algebra. Vol 1, Frederick Ungar Publishing Co., New York, 1970. Translated by Fred Blum and John R. Schulenberger. MR 263582
- Hugh C. Williams, Édouard Lucas and primality testing, Canadian Mathematical Society Series of Monographs and Advanced Texts, vol. 22, John Wiley & Sons, Inc., New York, 1998. A Wiley-Interscience Publication. MR 1632793
Bibliographic Information
- Pedro Berrizbeitia
- Affiliation: Departamento de Matemáticas Puras y Aplicadas, Universidad Simón Bolívar, Caracas, Venezuela
- Email: pedrob@usb.ve
- Received by editor(s): February 4, 2003
- Received by editor(s) in revised form: June 12, 2004
- Published electronically: April 11, 2005
- © Copyright 2005 American Mathematical Society
- Journal: Math. Comp. 74 (2005), 2043-2059
- MSC (2000): Primary 11Y11, 11Y16
- DOI: https://doi.org/10.1090/S0025-5718-05-01727-8
- MathSciNet review: 2164112