## The approximation of the Maxwell eigenvalue problem using a least-squares method

HTML articles powered by AMS MathViewer

- by James H. Bramble, Tzanio V. Kolev and Joseph E. Pasciak PDF
- Math. Comp.
**74**(2005), 1575-1598 Request permission

## Abstract:

In this paper we consider an approximation to the Maxwell’s eigenvalue problem based on a very weak formulation of two div-curl systems with complementary boundary conditions. We formulate each of these div-curl systems as a general variational problem with different test and trial spaces, i.e., the solution space is $\mathbfit {L}^2 \equiv (L^2(\Omega ))^3$ and components in the test spaces are in subspaces of $H^1(\Omega )$, the Sobolev space of order one on the computational domain $\Omega$. A finite-element least-squares approximation to these variational problems is used as a basis for the approximation. Using the structure of the continuous eigenvalue problem, a discrete approximation to the eigenvalues is set up involving only the approximation to either of the div-curl systems. We give some theorems that guarantee the convergence of the eigenvalues to those of the continuous problem without the occurrence of spurious values. Finally, some results of numerical experiments are given.## References

- EMSolve: unstructured grid computational electromagnetics using mixed finite element methods. URL http://www.llnl.gov/CASC/emsolve/.
- C. Amrouche, C. Bernardi, M. Dauge, and V. Girault,
*Vector potentials in three-dimensional non-smooth domains*, Math. Methods Appl. Sci.**21**(1998), no. 9, 823–864 (English, with English and French summaries). MR**1626990**, DOI 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B - Alfredo Bermúdez and Dolores G. Pedreira,
*Mathematical analysis of a finite element method without spurious solutions for computation of dielectric waveguides*, Numer. Math.**61**(1992), no. 1, 39–57. MR**1145906**, DOI 10.1007/BF01385496 - Daniele Boffi,
*Fortin operator and discrete compactness for edge elements*, Numer. Math.**87**(2000), no. 2, 229–246. MR**1804657**, DOI 10.1007/s002110000182 - Daniele Boffi, Franco Brezzi, and Lucia Gastaldi,
*On the convergence of eigenvalues for mixed formulations*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)**25**(1997), no. 1-2, 131–154 (1998). Dedicated to Ennio De Giorgi. MR**1655512** - D. Boffi, P. Fernandes, L. Gastaldi, and I. Perugia. Computational models of electromagnetic resonators: analysis of edge element approximation.
*SIAM J. Numer. Anal.*, 36(4):1264–1290 (electronic), 1999. - Alain Bossavit,
*Computational electromagnetism*, Electromagnetism, Academic Press, Inc., San Diego, CA, 1998. Variational formulations, complementarity, edge elements. MR**1488417** - James H. Bramble and Joseph E. Pasciak,
*New convergence estimates for multigrid algorithms*, Math. Comp.**49**(1987), no. 180, 311–329. MR**906174**, DOI 10.1090/S0025-5718-1987-0906174-X - J. H. Bramble, T. V. Kolev, and J. E. Pasciak. A least-squares method for the time-harmonic Maxwell equations. in preparation, 2004.
- James H. Bramble and Joseph E. Pasciak,
*Uniform convergence estimates for multigrid $V$-cycle algorithms with less than full elliptic regularity*, Domain decomposition methods in science and engineering (Como, 1992) Contemp. Math., vol. 157, Amer. Math. Soc., Providence, RI, 1994, pp. 17–26. MR**1262601**, DOI 10.1090/conm/157/01401 - J. H. Bramble and J. E. Osborn,
*Rate of convergence estimates for nonselfadjoint eigenvalue approximations*, Math. Comp.**27**(1973), 525–549. MR**366029**, DOI 10.1090/S0025-5718-1973-0366029-9 - James H. Bramble and Joseph E. Pasciak,
*A new approximation technique for div-curl systems*, Math. Comp.**73**(2004), no. 248, 1739–1762. MR**2059734**, DOI 10.1090/S0025-5718-03-01616-8 - M. Costabel, M. Dauge, and D. Martin. Numerical investigation of a boundary penalization method for Maxwell equations. 1999. Preprint.
- M. Costabel, M. Dauge, and D. Martin. Weighted regularization of Maxwell equations in polyhedral domains. 2001. Preprint.
- Martin Costabel, Monique Dauge, and Serge Nicaise,
*Singularities of Maxwell interface problems*, M2AN Math. Model. Numer. Anal.**33**(1999), no. 3, 627–649. MR**1713241**, DOI 10.1051/m2an:1999155 - M. Dauge. Benchmark computations for maxwell equations for the approximation of highly singular solutions. URL http://perso.univ-rennes1.fr/monique.dauge/benchmax.html.
- Monique Dauge,
*Elliptic boundary value problems on corner domains*, Lecture Notes in Mathematics, vol. 1341, Springer-Verlag, Berlin, 1988. Smoothness and asymptotics of solutions. MR**961439**, DOI 10.1007/BFb0086682 - E. G. D′jakonov and M. Ju. Orehov,
*Minimization of computational work in finding the first eigenvalues of differential operators*, Mat. Zametki**27**(1980), no. 5, 795–812, 831 (Russian). MR**578262** - C. Emson, J. Simkin, and C. Trowbridge. Further developments in three dimensional eddy current analysis.
*IEEE Trans. on Magnetics*, MAG-21:2231–2234, 1985. - V. Girault and P.-A. Raviart,
*Finite element approximation of the Navier-Stokes equations*, Lecture Notes in Mathematics, vol. 749, Springer-Verlag, Berlin-New York, 1979. MR**548867** - P. Grisvard,
*Elliptic problems in nonsmooth domains*, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR**775683** - R. Hiptmair,
*Finite elements in computational electromagnetism*, Acta Numer.**11**(2002), 237–339. MR**2009375**, DOI 10.1017/S0962492902000041 - J. D. Joannopoulos, R. D. Meade, and J. N. Winn.
*Photonic Crystals*. Princeton University Press, Princeton NJ, 1995. - A. Kameari. Three dimensional eddy current calculation using finite element method with a-v in conductor and $\omega$ in vacuum.
*IEEE Trans. on Magnetics*, 24:118–121, 1988. - Tosio Kato,
*Perturbation theory for linear operators*, 2nd ed., Grundlehren der Mathematischen Wissenschaften, Band 132, Springer-Verlag, Berlin-New York, 1976. MR**0407617** - A. V. Knyazev,
*Convergence rate estimates for iterative methods for a mesh symmetric eigenvalue problem*, Soviet J. Numer. Anal. Math. Modelling**2**(1987), no. 5, 371–396. Translated from the Russian. MR**915330** - Andrew V. Knyazev,
*Preconditioned eigensolvers—an oxymoron?*, Electron. Trans. Numer. Anal.**7**(1998), 104–123. Large scale eigenvalue problems (Argonne, IL, 1997). MR**1667642** - Andrew V. Knyazev,
*Toward the optimal preconditioned eigensolver: locally optimal block preconditioned conjugate gradient method*, SIAM J. Sci. Comput.**23**(2001), no. 2, 517–541. Copper Mountain Conference (2000). MR**1861263**, DOI 10.1137/S1064827500366124 - F. Kukuchi. On a discrete compactness property for the nedelec finite elements.
*J. Fac. Sci. Univ. Tokyo*, Sect. 1A, Math, 36:479–490, 1989. - P. Leonard and D. Rodger. Finite element scheme for transient 3d eddy currents.
*IEEE Trans. on Magnetics*, 24:58–66, 1988. - Peter Monk,
*A simple proof of convergence for an edge element discretization of Maxwell’s equations*, Computational electromagnetics (Kiel, 2001) Lect. Notes Comput. Sci. Eng., vol. 28, Springer, Berlin, 2003, pp. 127–141. MR**1986135**, DOI 10.1007/978-3-642-55745-3_{9} - Peter Monk,
*Finite element methods for Maxwell’s equations*, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003. MR**2059447**, DOI 10.1093/acprof:oso/9780198508885.001.0001 - P. Monk and L. Demkowicz,
*Discrete compactness and the approximation of Maxwell’s equations in ${\Bbb R}^3$*, Math. Comp.**70**(2001), no. 234, 507–523. MR**1709155**, DOI 10.1090/S0025-5718-00-01229-1 - J.-C. Nédélec,
*Mixed finite elements in $\textbf {R}^{3}$*, Numer. Math.**35**(1980), no. 3, 315–341. MR**592160**, DOI 10.1007/BF01396415 - J.-C. Nédélec,
*A new family of mixed finite elements in $\textbf {R}^3$*, Numer. Math.**50**(1986), no. 1, 57–81. MR**864305**, DOI 10.1007/BF01389668 - I. Perugia, D. Schötzau, and P. Monk,
*Stabilized interior penalty methods for the time-harmonic Maxwell equations*, Comput. Methods Appl. Mech. Engrg.**191**(2002), no. 41-42, 4675–4697. MR**1929626**, DOI 10.1016/S0045-7825(02)00399-7 - L. Ridgway Scott and Shangyou Zhang,
*Finite element interpolation of nonsmooth functions satisfying boundary conditions*, Math. Comp.**54**(1990), no. 190, 483–493. MR**1011446**, DOI 10.1090/S0025-5718-1990-1011446-7 - C. M. Soukoulis.
*Photonic Band Gap Materials*. Kluwer, Dordrecht, 1996.

## Additional Information

**James H. Bramble**- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843-3368
- Email: bramble@math.tamu.edu
**Tzanio V. Kolev**- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843-3368
- Email: tkolev@math.tamu.edu
**Joseph E. Pasciak**- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843-3368
- Email: pasciak@math.tamu.edu
- Received by editor(s): April 23, 2004
- Received by editor(s) in revised form: October 12, 2004
- Published electronically: May 5, 2005
- Additional Notes: This work is based upon work supported by the National Science Foundation under grant No. 0311902.
- © Copyright 2005 American Mathematical Society
- Journal: Math. Comp.
**74**(2005), 1575-1598 - MSC (2000): Primary 65F10, 65N30
- DOI: https://doi.org/10.1090/S0025-5718-05-01759-X
- MathSciNet review: 2164087