Comparison theorems of Kolmogorov type and exact values of $n$-widths on Hardy–Sobolev classes
HTML articles powered by AMS MathViewer
- by Gensun Fang and Xuehua Li;
- Math. Comp. 75 (2006), 241-258
- DOI: https://doi.org/10.1090/S0025-5718-05-01765-5
- Published electronically: June 16, 2005
- PDF | Request permission
Abstract:
Let $S_{\beta }:=\{z\in {\mathbb C}:|\textrm {Im}z|<\beta \}$ be a strip in complex plane. $\widetilde {H}_{\infty ,\beta }^{r}$ denotes those $2\pi$-periodic, real-valued functions on ${\mathbb R}$ which are analytic in the strip $S_{\beta }$ and satisfy the condition $|f^{(r)}(z)|\leq 1$, $z\in S_{\beta }$. Osipenko and Wilderotter obtained the exact values of the Kolmogorov, linear, Gel′fand, and information $n$-widths of $\widetilde {H}_{\infty ,\beta }^{r}$ in $L_{\infty }[0,2\pi ]$, $r=0,1,2,\ldots$, and 2$n$-widths of $\widetilde {H}_{\infty ,\beta }^{r}$ in $L_{q}[0,2\pi ]$, $r=0$, $1\leq q<\infty$. In this paper we continue their work. Firstly, we establish a comparison theorem of Kolmogorov type on $\widetilde {H}_{\infty ,\beta }^{r}$, from which we get an inequality of Landau–Kolmogorov type. Secondly, we apply these results to determine the exact values of the Gel′fand $n$-width of $\widetilde {H}_{\infty ,\beta }^{r}$ in $L_{q}[0,2\pi ]$, $r=0,1,2\ldots ,$ $1\leq q<\infty$. Finally, we calculate the exact values of Kolmogorov $2n$-width, linear $2n$-width, and information $2n$-width of $\widetilde {H}_{\infty ,\beta }^{r}$ in $L_{q}[0,2\pi ]$, $r\in {\mathbb N}$, $1\leq q<\infty$.References
- N. I. Ahiezer, Èlementy teorii èllipticheskikh funktsiĭ, Izdat. “Nauka”, Moscow, 1970 (Russian). Second revised edition]. MR 288319
- Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi, Higher transcendental functions. Vols. I, II, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1953. Based, in part, on notes left by Harry Bateman. MR 58756
- Stephen D. Fisher, Envelopes, widths, and Landau problems for analytic functions, Constr. Approx. 5 (1989), no. 2, 171–187. MR 989671, DOI 10.1007/BF01889605
- Wilhelm Forst, Über die Breite von Klassen holomorpher periodischer Funktionen, J. Approximation Theory 19 (1977), no. 4, 325–331 (German). MR 481790, DOI 10.1016/0021-9045(77)90096-x
- Samuel Karlin, Total positivity. Vol. I, Stanford University Press, Stanford, CA, 1968. MR 230102
- N. Korneĭchuk, Exact constants in approximation theory, Encyclopedia of Mathematics and its Applications, vol. 38, Cambridge University Press, Cambridge, 1991. Translated from the Russian by K. Ivanov. MR 1124406, DOI 10.1017/CBO9781107325791
- George G. Lorentz, Manfred v. Golitschek, and Yuly Makovoz, Constructive approximation, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 304, Springer-Verlag, Berlin, 1996. Advanced problems. MR 1393437, DOI 10.1007/978-3-642-60932-9
- Charles A. Micchelli and Allan Pinkus, Some problems in the approximation of functions of two variables and $n$-widths of integral operators, J. Approx. Theory 24 (1978), no. 1, 51–77. MR 510921, DOI 10.1016/0021-9045(78)90036-9
- K. Yu. Osipenko, On $n$-widths, optimal quadrature formulas and optimal reconstruction of functions that are analytic in a strip, Izv. Ross. Akad. Nauk Ser. Mat. 58 (1994), no. 4, 55–79 (Russian, with Russian summary); English transl., Russian Acad. Sci. Izv. Math. 45 (1995), no. 1, 55–78. MR 1307056, DOI 10.1070/IM1995v045n01ABEH001635
- K. Yu. Osipenko, Exact values of $n$-widths and optimal quadratures on classes of bounded analytic and harmonic functions, J. Approx. Theory 82 (1995), no. 1, 156–175. MR 1343137, DOI 10.1006/jath.1995.1073
- K. Yu. Osipenko, Exact $n$-widths of Hardy-Sobolev classes, Constr. Approx. 13 (1997), no. 1, 17–27. MR 1424362, DOI 10.1007/s003659900031
- K. Yu. Osipenko, On exact values of $n$-widths on classes defined by operators that do not increase oscillations, Mat. Sb. 188 (1997), no. 9, 113–126 (Russian, with Russian summary); English transl., Sb. Math. 188 (1997), no. 9, 1371–1383. MR 1481666, DOI 10.1070/SM1997v188n09ABEH000259
- K. Yu. Osipenko and K. Wilderotter, Optimal information for approximating periodic analytic functions, Math. Comp. 66 (1997), no. 220, 1579–1592. MR 1433267, DOI 10.1090/S0025-5718-97-00896-X
- K. Yu. Osipenko, On optimal recovery methods in Hardy-Sobolev spaces, Mat. Sb. 192 (2001), no. 2, 67–86 (Russian, with Russian summary); English transl., Sb. Math. 192 (2001), no. 1-2, 225–244. MR 1835986, DOI 10.1070/SM2001v192n02ABEH000543
- Allan Pinkus, On $n$-widths of periodic functions, J. Analyse Math. 35 (1979), 209–235. MR 555304, DOI 10.1007/BF02791066
- Allan Pinkus, $n$-widths in approximation theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 7, Springer-Verlag, Berlin, 1985. MR 774404, DOI 10.1007/978-3-642-69894-1
- Yong Sheng Sun, A remark on Kolmogorov’s comparison theorem, Chinese Ann. Math. Ser. B 7 (1986), no. 4, 463–467. A Chinese summary appears in Chinese Ann. Math. Ser. A 7 (1986), no. 5, 606–607. MR 886335
- L. V. Taĭkov, The approximation in the mean of certain classes of periodic functions, Trudy Mat. Inst. Steklov. 88 (1967), 61–70 (Russian). MR 222545
- V. M. Tihomirov, Diameters of sets in functional spaces and the theory of best approximations, Uspehi Mat. Nauk 15, no. 3(93), 81–120 (Russian); English transl., Russian Math. Surveys 15 (1960), no. 3, 75–111. MR 117489, DOI 10.1070/RM1960v015n03ABEH004093
- A. A. Žensykbaev, The best quadrature formula on the class $W^{r}L_{p}$, Dokl. Akad. Nauk SSSR 227 (1976), no. 2, 277–279 (Russian). MR 405816
Bibliographic Information
- Gensun Fang
- Affiliation: School of Mathematical Sciences, Beijing Normal University, Beijing 100875, People’s Republic of China
- Email: fanggs@bnu.edu.cn
- Xuehua Li
- Affiliation: School of Mathematical Sciences, Beijing Normal University, Beijing 100875, People’s Republic of China
- Received by editor(s): July 16, 2002
- Received by editor(s) in revised form: January 8, 2004
- Published electronically: June 16, 2005
- Additional Notes: The authors were supported in part the Natural Science Foundation of China Grant #10371009 and Research Fund for the Doctoral Program Higher Education.
- © Copyright 2005 American Mathematical Society
- Journal: Math. Comp. 75 (2006), 241-258
- MSC (2000): Primary 65E05, 41A46; Secondary 30D55, 30E10
- DOI: https://doi.org/10.1090/S0025-5718-05-01765-5
- MathSciNet review: 2176398