Aurifeuillian factorization
HTML articles powered by AMS MathViewer
- by Andrew Granville and Peter Pleasants;
- Math. Comp. 75 (2006), 497-508
- DOI: https://doi.org/10.1090/S0025-5718-05-01766-7
- Published electronically: June 16, 2005
- PDF | Request permission
Abstract:
The Cunningham project seeks to factor numbers of the form $b^{n}\pm 1$ with $b=2,3,\dots$ small. One of the most useful techniques is Aurifeuillian Factorization whereby such a number is partially factored by replacing $b^{n}$ by a polynomial in such a way that polynomial factorization is possible. For example, by substituting $y=2^{k}$ into the polynomial factorization $(2y^{2})^{2}+1=(2y^{2}-2y+1)(2y^{2}+2y+1)$ we can partially factor $2^{4k+2}+1$. In 1962 Schinzel gave a list of such identities that have proved useful in the Cunningham project; we believe that Schinzel identified all numbers that can be factored by such identities and we prove this if one accepts our definition of what “such an identity” is. We then develop our theme to similarly factor $f(b^{n})$ for any given polynomial $f$, using deep results of Faltings from algebraic geometry and Fried from the classification of finite simple groups.References
- Richard P. Brent, On computing factors of cyclotomic polynomials, Math. Comp. 61 (1993), no. 203, 131–149. MR 1205459, DOI 10.1090/S0025-5718-1993-1205459-2
- John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman, and S. S. Wagstaff Jr., Factorizations of $b^n \pm 1$, 2nd ed., Contemporary Mathematics, vol. 22, American Mathematical Society, Providence, RI, 1988. $b=2,3,5,6,7,10,11,12$ up to high powers. MR 996414, DOI 10.1090/conm/022
- Henri Darmon and Andrew Granville, On the equations $z^m=F(x,y)$ and $Ax^p+By^q=Cz^r$, Bull. London Math. Soc. 27 (1995), no. 6, 513–543. MR 1348707, DOI 10.1112/blms/27.6.513
- G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), no. 3, 349–366 (German). MR 718935, DOI 10.1007/BF01388432
- Gerd Faltings, Diophantine approximation on abelian varieties, Ann. of Math. (2) 133 (1991), no. 3, 549–576. MR 1109353, DOI 10.2307/2944319
- M. Fried, Applications of the classification of simple groups to monodromy, Part II: Davenport and Hilbert-Siegel problems (to appear).
- Carl Friedrich Gauss, Disquisitiones arithmeticae, Yale University Press, New Haven, Conn.-London, 1966. Translated into English by Arthur A. Clarke, S. J. MR 197380
- S. Hahn, A remark on Aurifeuilian factorizations, Math. Japon. 39 (1994), no. 3, 501–502. MR 1278865
- Jack Levine and R. E. Dalton, Minimum periods, modulo $p$, of first-order Bell exponential integers, Math. Comp. 16 (1962), 416–423. MR 148604, DOI 10.1090/S0025-5718-1962-0148604-2
- E. Lucas, Théorèmes d’arithmétique, Atti. Roy. Acad. Sci. Torino 13 (1878), 271–284.
- A. Schinzel, On primitive prime factors of $a^{n}-b^{n}$, Proc. Cambridge Philos. Soc. 58 (1962), 555–562. MR 143728, DOI 10.1017/S0305004100040561
- A. Schinzel and R. Tijdeman, On the equation $y^{m}=P(x)$, Acta Arith. 31 (1976), no. 2, 199–204. MR 422150, DOI 10.4064/aa-31-2-199-204
- Carl Ludwig Siegel, Gesammelte Abhandlungen. Bände I, II, III, Springer-Verlag, Berlin-New York, 1966 (German). Herausgegeben von K. Chandrasekharan und H. Maass. MR 197270
- Peter Stevenhagen, On Aurifeuillian factorizations, Nederl. Akad. Wetensch. Indag. Math. 49 (1987), no. 4, 451–468. MR 922449, DOI 10.1016/1385-7258(87)90009-6
- Q. Sun and Shao Fang Hong, Aurifeuillian factorizations of $q^q\pm 1\ (q=p^n)$, Gaoxiao Yingyong Shuxue Xuebao Ser. A 13 (1998), no. 3, 342–348 (Chinese, with English and Chinese summaries). MR 1646160
- Qi Sun, Debin Ren, Shaofang Hong, Pingzhi Yuan, and Qing Han, A new class of Aurifeuillian factorizations of $M^n\pm 1$, Sci. Math. 2 (1999), no. 3, 353–360. MR 1718279
- Samuel S. Wagstaff Jr., Aurifeuillian factorizations and the period of the Bell numbers modulo a prime, Math. Comp. 65 (1996), no. 213, 383–391. MR 1325876, DOI 10.1090/S0025-5718-96-00683-7
Bibliographic Information
- Andrew Granville
- Affiliation: Département de mathématiques et de statistique, Université de Montréal, CP 6128 succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
- MR Author ID: 76180
- ORCID: 0000-0001-8088-1247
- Email: andrew@DMS.UMontreal.CA
- Peter Pleasants
- Affiliation: Department of Mathematics, University of Queensland, Queensland 4072, Australia
- Email: peterpleasants@iprimus.com.au
- Received by editor(s): November 28, 2001
- Received by editor(s) in revised form: June 1, 2004
- Published electronically: June 16, 2005
- Additional Notes: Le premier auteur est partiellement soutenu par une bourse du Conseil de recherches en sciences naturelles et en génie du Canada and was supported, in part, by the National Science Foundation when this project began.
- © Copyright 2005 American Mathematical Society
- Journal: Math. Comp. 75 (2006), 497-508
- MSC (2000): Primary 11Y05; Secondary 11T22, 11Y40, 12Y05
- DOI: https://doi.org/10.1090/S0025-5718-05-01766-7
- MathSciNet review: 2176412