Sharp $L^1$ a posteriori error analysis for nonlinear convection-diffusion problems
HTML articles powered by AMS MathViewer
- by Zhiming Chen and Guanghua Ji;
- Math. Comp. 75 (2006), 43-71
- DOI: https://doi.org/10.1090/S0025-5718-05-01778-3
- Published electronically: September 29, 2005
- PDF | Request permission
Abstract:
We derive sharp $L^\infty (L^1)$ a posteriori error estimates for initial boundary value problems of nonlinear convection-diffusion equations of the form \begin{eqnarray*} \frac {\partial u}{\partial t}+\operatorname {div}f(u)-\Delta A(u)=g \end{eqnarray*} under the nondegeneracy assumption $A’(s)>0$ for any $s\in \mathbb {R}$. The problem displays both parabolic and hyperbolic behavior in a way that depends on the solution itself. It is discretized implicitly in time via the method of characteristic and in space via continuous piecewise linear finite elements. The analysis is based on the Kružkov “doubling of variables” device and the recently introduced “boundary layer sequence” technique to derive the entropy error inequality on bounded domains. The derived a posteriori error estimators have the correct convergence order in the region where the solution is smooth and recover the standard a posteriori error estimators known for parabolic equations with strong diffusions.References
- Todd Arbogast and Mary F. Wheeler, A characteristics-mixed finite element method for advection-dominated transport problems, SIAM J. Numer. Anal. 32 (1995), no. 2, 404–424. MR 1324295, DOI 10.1137/0732017
- Hans Wilhelm Alt and Stephan Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z. 183 (1983), no. 3, 311–341. MR 706391, DOI 10.1007/BF01176474
- I. Babuška and W. C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15 (1978), no. 4, 736–754. MR 483395, DOI 10.1137/0715049
- José Carrillo, Entropy solutions for nonlinear degenerate problems, Arch. Ration. Mech. Anal. 147 (1999), no. 4, 269–361. MR 1709116, DOI 10.1007/s002050050152
- Zhiming Chen and Shibin Dai, Adaptive Galerkin methods with error control for a dynamical Ginzburg-Landau model in superconductivity, SIAM J. Numer. Anal. 38 (2001), no. 6, 1961–1985. MR 1856238, DOI 10.1137/S0036142998349102
- Zhiming Chen and Shibin Dai, On the efficiency of adaptive finite element methods for elliptic problems with discontinuous coefficients, SIAM J. Sci. Comput. 24 (2002), no. 2, 443–462. MR 1951050, DOI 10.1137/S1064827501383713
- Zhiming Chen and Jia Feng, An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems, Math. Comp. 73 (2004), no. 247, 1167–1193. MR 2047083, DOI 10.1090/S0025-5718-04-01634-5
- Zhiming Chen, Ricardo H. Nochetto, and Alfred Schmidt, A characteristic Galerkin method with adaptive error control for the continuous casting problem, Comput. Methods Appl. Mech. Engrg. 189 (2000), no. 1, 249–276. MR 1779683, DOI 10.1016/S0045-7825(99)00295-9
- Ph. Clément, Approximation by finite element functions using local regularization, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. 9 (1975), no. no. , no. R-2, 77–84 (English, with French summary). MR 400739
- B. Cockburn, A simple introduction to error estimation for nonlinear hyperbolic conservation laws, Department of Mathematics, University of Minnesota, 2003. http://www.math.umn.edu/ cockburn/LectureNotes.html
- Bernardo Cockburn, Frédéric Coquel, and Philippe LeFloch, An error estimate for finite volume methods for multidimensional conservation laws, Math. Comp. 63 (1994), no. 207, 77–103. MR 1240657, DOI 10.1090/S0025-5718-1994-1240657-4
- Bernardo Cockburn and Pierre-Alain Gremaud, Error estimates for finite element methods for scalar conservation laws, SIAM J. Numer. Anal. 33 (1996), no. 2, 522–554. MR 1388487, DOI 10.1137/0733028
- C. N. Dawson, T. F. Russell, and M. F. Wheeler, Some improved error estimates for the modified method of characteristics, SIAM J. Numer. Anal. 26 (1989), no. 6, 1487–1512. MR 1025101, DOI 10.1137/0726087
- Willy Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal. 33 (1996), no. 3, 1106–1124. MR 1393904, DOI 10.1137/0733054
- Willy Dörfler, A time- and space-adaptive algorithm for the linear time-dependent Schrödinger equation, Numer. Math. 73 (1996), no. 4, 419–448. MR 1393174, DOI 10.1007/s002110050199
- Jim Douglas Jr. and Thomas F. Russell, Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. Numer. Anal. 19 (1982), no. 5, 871–885. MR 672564, DOI 10.1137/0719063
- Kenneth Eriksson and Claes Johnson, Adaptive finite element methods for parabolic problems. I. A linear model problem, SIAM J. Numer. Anal. 28 (1991), no. 1, 43–77. MR 1083324, DOI 10.1137/0728003
- Robert Eymard, Thierry Gallouët, and Raphaèle Herbin, Error estimate for approximate solutions of a nonlinear convection-diffusion problem, Adv. Differential Equations 7 (2002), no. 4, 419–440. MR 1869118
- Robert Eymard, Thierry Gallouët, Raphaèle Herbin, and Anthony Michel, Convergence of a finite volume scheme for nonlinear degenerate parabolic equations, Numer. Math. 92 (2002), no. 1, 41–82. MR 1917365, DOI 10.1007/s002110100342
- Claes Johnson and Anders Szepessy, Adaptive finite element methods for conservation laws based on a posteriori error estimates, Comm. Pure Appl. Math. 48 (1995), no. 3, 199–234. MR 1322810, DOI 10.1002/cpa.3160480302
- Paul Houston and Endre Süli, Adaptive Lagrange-Galerkin methods for unsteady convection-diffusion problems, Math. Comp. 70 (2001), no. 233, 77–106. MR 1681108, DOI 10.1090/S0025-5718-00-01187-X
- K. Huang, R. Zhang and M.T. van Genuchten, An Eulerian-Lagrangian approach with an adaptively corrected method of characteristic to simulate variably saturated water flow, Water Resource Research 30 (1994), 499-507.
- J. Kačur, Solution of degenerate convection-diffusion problems by the method of characteristics, SIAM J. Numer. Anal. 39 (2001), no. 3, 858–879. MR 1860448, DOI 10.1137/S0036142998336643
- Kenneth Hvistendahl Karlsen and Nils Henrik Risebro, On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients, Discrete Contin. Dyn. Syst. 9 (2003), no. 5, 1081–1104. MR 1974417, DOI 10.3934/dcds.2003.9.1081
- Dietmar Kröner and Mario Ohlberger, A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multidimensions, Math. Comp. 69 (2000), no. 229, 25–39. MR 1659843, DOI 10.1090/S0025-5718-99-01158-8
- S. N. Kružkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.) 81(123) (1970), 228–255 (Russian). MR 267257
- Corrado Mascia, Alessio Porretta, and Andrea Terracina, Nonhomogeneous Dirichlet problems for degenerate parabolic-hyperbolic equations, Arch. Ration. Mech. Anal. 163 (2002), no. 2, 87–124. MR 1911095, DOI 10.1007/s002050200184
- Mario Ohlberger, A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations, M2AN Math. Model. Numer. Anal. 35 (2001), no. 2, 355–387. MR 1825703, DOI 10.1051/m2an:2001119
- Felix Otto, $L^1$-contraction and uniqueness for quasilinear elliptic-parabolic equations, J. Differential Equations 131 (1996), no. 1, 20–38. MR 1415045, DOI 10.1006/jdeq.1996.0155
- Marco Picasso, Adaptive finite elements for a linear parabolic problem, Comput. Methods Appl. Mech. Engrg. 167 (1998), no. 3-4, 223–237. MR 1673951, DOI 10.1016/S0045-7825(98)00121-2
- O. Pironneau, On the transport-diffusion algorithm and its applications to the Navier-Stokes equations, Numer. Math. 38 (1981/82), no. 3, 309–332. MR 654100, DOI 10.1007/BF01396435
- A. Schmidt and K.G. Siebert, ALBERT: An adaptive hierarchical finite element toolbox, IAM, University of Freiburg, 2000. http://www.mathematik.uni-freiburg.de/IAM/Research/projectsdz/albert.
Bibliographic Information
- Zhiming Chen
- Affiliation: LSEC, Institute of Computational Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
- Email: zmchen@lsec.cc.ac.cn
- Guanghua Ji
- Affiliation: Institute of Computational Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
- Email: ghji@lsec.cc.ac.cn
- Received by editor(s): September 3, 2004
- Received by editor(s) in revised form: September 29, 2004
- Published electronically: September 29, 2005
- Additional Notes: This author was supported in part by China NSF under grant 10025102 and by China MOST under grant G1999032802 and 2005CB321700. Part of the work was done when the first author was participating in the 2003 Programme Computational Challenges in Partial Differential Equations at the Isaac Newton Institute for Mathematical Sciences, Cambridge, United Kingdom
- © Copyright 2005 American Mathematical Society
- Journal: Math. Comp. 75 (2006), 43-71
- MSC (2000): Primary 65N15, 65N30, 65N50
- DOI: https://doi.org/10.1090/S0025-5718-05-01778-3
- MathSciNet review: 2176389