Orthogonal Laurent polynomials corresponding to certain strong Stieltjes distributions with applications to numerical quadratures
HTML articles powered by AMS MathViewer
- by C. Díaz-Mendoza, P. González-Vera, M. Jiménez Paiz and F. Cala Rodríguez;
- Math. Comp. 75 (2006), 281-305
- DOI: https://doi.org/10.1090/S0025-5718-05-01781-3
- Published electronically: September 9, 2005
- PDF | Request permission
Abstract:
In this paper we shall be mainly concerned with sequences of orthogonal Laurent polynomials associated with a class of strong Stieltjes distributions introduced by A.S. Ranga. Algebraic properties of certain quadratures formulae exactly integrating Laurent polynomials along with an application to estimate weighted integrals on $[-1,1]$ with nearby singularities are given. Finally, numerical examples involving interpolatory rules whose nodes are zeros of orthogonal Laurent polynomials are also presented.References
- Adhemar Bultheel, Pablo González-Vera, Erik Hendriksen, and Olav Njåstad, Orthogonal rational functions, Cambridge Monographs on Applied and Computational Mathematics, vol. 5, Cambridge University Press, Cambridge, 1999. MR 1676258, DOI 10.1017/CBO9780511530050
- A. Bultheel, C. Díaz-Mendoza, P. González-Vera, and R. Orive, On the convergence of certain Gauss-type quadrature formulas for unbounded intervals, Math. Comp. 69 (2000), no. 230, 721–747. MR 1651743, DOI 10.1090/S0025-5718-99-01107-2
- A. Bultheel, C. Díaz-Mendoza, P. González-Vera and R. Orive, Orthogonal Laurent polynomials and quadrature formulas for unbounded intervals: II Interpolatory rules, Preprint, 2003.
- A. Bultheel, C. Díaz-Mendoza, P. González-Vera, and R. Orive, Quadrature on the half-line and two-point Padé approximants to Stieltjes functions. II. Convergence, J. Comput. Appl. Math. 77 (1997), no. 1-2, 53–76. ROLLS Symposium (Leipzig, 1996). MR 1440004, DOI 10.1016/S0377-0427(96)00122-7
- Lyle Cochran and S. Clement Cooper, Orthogonal Laurent polynomials on the real line, Continued fractions and orthogonal functions (Loen, 1992) Lecture Notes in Pure and Appl. Math., vol. 154, Dekker, New York, 1994, pp. 47–100. MR 1263248
- R. Cruz-Barroso and P. González-Vera, Orthogonal Laurent polynomials and quadratures on the unit circle and the real half-line, to appear in Electron. Trans. Numer. Anal., 2003.
- C. Díaz-Mendoza, P. González-Vera, and R. Orive, Padé approximants and quadratures related to certain strong distributions, Proceedings of the Fifth International Symposium on Orthogonal Polynomials, Special Functions and their Applications (Patras, 1999), 2001, pp. 315–329. MR 1858290, DOI 10.1016/S0377-0427(00)00669-5
- C. Díaz-Mendoza, P. González-Vera, and M. Jiménez Paiz, Strong Stieltjes distributions and orthogonal Laurent polynomials with applications to quadratures and Padé approximation, Preprint 2003.
- Walter Gautschi, On generating orthogonal polynomials, SIAM J. Sci. Statist. Comput. 3 (1982), no. 3, 289–317. MR 667829, DOI 10.1137/0903018
- Walter Gautschi, Numerical analysis, Birkhäuser Boston, Inc., Boston, MA, 1997. An introduction. MR 1454125
- Pablo González-Vera, Guillermo López, Ramón Orive, and Juan C. Santos, On the convergence of quadrature formulas for complex weight functions, J. Math. Anal. Appl. 189 (1995), no. 2, 514–532. MR 1312059, DOI 10.1006/jmaa.1995.1033
- P. González-Vera, M. Jiménez Paiz, R. Orive, and G. López Lagomasino, On the convergence of quadrature formulas connected with multipoint Padé-type approximation, J. Math. Anal. Appl. 202 (1996), no. 3, 747–775. MR 1408352, DOI 10.1006/jmaa.1996.0345
- B. A. Hagler, A transformation of orthogonal polynomial sequences into orthogonal Laurent polynomial sequences, Ph. D. Thesis, University of Colorado, 1997.
- Brian A. Hagler, Formulas for the moments of some strong moment distributions, Orthogonal functions, moment theory, and continued fractions (Campinas, 1996) Lecture Notes in Pure and Appl. Math., vol. 199, Dekker, New York, 1998, pp. 179–186. MR 1655662
- Brian A. Hagler, William B. Jones, and W. J. Thron, Orthogonal Laurent polynomials of Jacobi, Hermite, and Laguerre types, Orthogonal functions, moment theory, and continued fractions (Campinas, 1996) Lecture Notes in Pure and Appl. Math., vol. 199, Dekker, New York, 1998, pp. 187–208. MR 1655663
- E. Hendriksen, A characterization of classical orthogonal Laurent polynomials, Nederl. Akad. Wetensch. Indag. Math. 50 (1988), no. 2, 165–180. MR 952513, DOI 10.1016/S1385-7258(88)80025-8
- William B. Jones, W. J. Thron, and Haakon Waadeland, A strong Stieltjes moment problem, Trans. Amer. Math. Soc. 261 (1980), no. 2, 503–528. MR 580900, DOI 10.1090/S0002-9947-1980-0580900-4
- W.B. Jones and W.J. Thron, Orthogonal Laurent polynomials and Gaussian quadrature, in: Quantum Mechanics in Mathematics, Chemistry and Physics, eds. K.e E. Gustafson and W. P. Reinhardt, Plenum Press N.Y., 1981, pp. 449–455.
- William B. Jones, Olav Njȧstad, and W. J. Thron, Two-point Padé expansions for a family of analytic functions, J. Comput. Appl. Math. 9 (1983), no. 2, 105–123. MR 709210, DOI 10.1016/0377-0427(83)90034-1
- William B. Jones and Olav Njåstad, Orthogonal Laurent polynomials and strong moment theory: a survey, J. Comput. Appl. Math. 105 (1999), no. 1-2, 51–91. Continued fractions and geometric function theory (CONFUN) (Trondheim, 1997). MR 1690578, DOI 10.1016/S0377-0427(99)00027-8
- Klaus-Jürgen Förster and Knut Petras, On estimates for the weights in Gaussian quadrature in the ultraspherical case, Math. Comp. 55 (1990), no. 191, 243–264. MR 1023758, DOI 10.1090/S0025-5718-1990-1023758-1
- O. Njåstad and W.J. Thron, The theory of sequences of orthogonal L-polynomials, Det Kong. Norske Vid. Selsk. 1 (1983), 54–91.
- William E. Smith, Ian H. Sloan, and Alex H. Opie, Product integration over infinite intervals. I. Rules based on the zeros of Hermite polynomials, Math. Comp. 40 (1983), no. 162, 519–535. MR 689468, DOI 10.1090/S0025-5718-1983-0689468-1
- K. Petras, An asymptotic expansion for the weights of Gaussian quadrature formulae, Acta Math. Hungar. 70 (1996), no. 1-2, 89–100. MR 1361463, DOI 10.1007/BF00113915
- Jorge Sánchez-Ruiz, Information entropy of Gegenbauer polynomials and Gaussian quadrature, J. Phys. A 36 (2003), no. 17, 4857–4865. MR 1984014, DOI 10.1088/0305-4470/36/17/312
- A. Sri Ranga and J. H. McCabe, On the extensions of some classical distributions, Proc. Edinburgh Math. Soc. (2) 34 (1991), no. 1, 19–29. MR 1093173, DOI 10.1017/S0013091500004971
- A. Sri Ranga, Another quadrature rule of highest algebraic degree of precision, Numer. Math. 68 (1994), no. 2, 283–294. MR 1283343, DOI 10.1007/s002110050062
- A. Sri Ranga, Symmetric orthogonal polynomials and the associated orthogonal $L$-polynomials, Proc. Amer. Math. Soc. 123 (1995), no. 10, 3135–3141. MR 1291791, DOI 10.1090/S0002-9939-1995-1291791-7
- A. Sri Ranga, E. X. L. de Andrade, and J. H. McCabe, Some consequences of a symmetry in strong distributions, J. Math. Anal. Appl. 193 (1995), no. 1, 158–168. MR 1338505, DOI 10.1006/jmaa.1995.1227
- A. Sri Ranga, E. X. L. de Andrade, and G. M. Phillips, Associated symmetric quadrature rules, Appl. Numer. Math. 21 (1996), no. 2, 175–183. MR 1413592, DOI 10.1016/0168-9274(96)00008-6
- A. Sri Ranga and Walter Van Assche, Blumenthal’s theorem for Laurent orthogonal polynomials, J. Approx. Theory 117 (2002), no. 2, 255–278. MR 1903057, DOI 10.1006/jath.2002.3700
- Ian H. Sloan and William E. Smith, Properties of interpolatory product integration rules, SIAM J. Numer. Anal. 19 (1982), no. 2, 427–442. MR 650061, DOI 10.1137/0719027
- Gábor Szegő, Orthogonal polynomials, 4th ed., American Mathematical Society Colloquium Publications, Vol. XXIII, American Mathematical Society, Providence, RI, 1975. MR 372517
Bibliographic Information
- C. Díaz-Mendoza
- Affiliation: Departamento de Análisis Matemático, Universidad de La Laguna 38271 La Laguna, Tenerife, Canary Islands, Spain
- Email: cjdiaz@ull.es
- P. González-Vera
- Affiliation: Departamento de Análisis Matemático, Universidad de La Laguna 38271 La Laguna, Tenerife, Canary Islands, Spain
- Email: pglez@ull.es
- M. Jiménez Paiz
- Affiliation: Departamento de Análisis Matemático, Universidad de La Laguna 38271 La Laguna, Tenerife, Canary Islands, Spain
- Email: mjimenez@ull.es
- F. Cala Rodríguez
- Affiliation: Centro de Docencia Superior en Ciencias Básicas, Campus Puerto Montt, Universidad Austral de Chile, Puerto Montt, Chile
- Email: fcala@uach.cl
- Received by editor(s): November 4, 2003
- Received by editor(s) in revised form: August 2, 2004
- Published electronically: September 9, 2005
- Additional Notes: The first three authors were partially supported by the Scientific Research Projects of the Ministerio de Ciencia y Tecnología and Comunidad Autónoma de Canarias under contracts BFM2001-3411 and PI 2002/136, respectively
The work of the fourth author was done during a visit to the Departamento de Análisis Matemático in Universidad de La Laguna (Canary Islands, Spain). - © Copyright 2005 American Mathematical Society
- Journal: Math. Comp. 75 (2006), 281-305
- MSC (2000): Primary 41A21, 30E05
- DOI: https://doi.org/10.1090/S0025-5718-05-01781-3
- MathSciNet review: 2176400