A semi-implicit monotone difference scheme for an initial-boundary value problem of a strongly degenerate parabolic equation modeling sedimentation-consolidation processes
HTML articles powered by AMS MathViewer
- by Raimund Bürger, Aníbal Coronel and Mauricio Sepúlveda;
- Math. Comp. 75 (2006), 91-112
- DOI: https://doi.org/10.1090/S0025-5718-05-01787-4
- Published electronically: October 21, 2005
- PDF | Request permission
Abstract:
We prove the convergence of a semi-implicit monotone finite difference scheme approximating an initial-boundary value problem for a spatially one-dimensional quasilinear strongly degenerate parabolic equation, which is supplied with two different inhomogeneous flux-type boundary conditions. This problem arises in the modeling of the sedimentation-consolidation process. We formulate the definition of entropy solution of the model in the sense of Kru$\check {\mbox {z}}$kov and prove convergence of the scheme to the unique $BV$ entropy solution of the problem, up to satisfaction of one of the boundary conditions.References
- Stefan Berres, Raimund Bürger, Kenneth H. Karlsen, and Elmer M. Tory, Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression, SIAM J. Appl. Math. 64 (2003), no. 1, 41–80. MR 2029124, DOI 10.1137/S0036139902408163
- R. Bürger, S. Evje, and K. Hvistendahl Karlsen, On strongly degenerate convection-diffusion problems modeling sedimentation-consolidation processes, J. Math. Anal. Appl. 247 (2000), no. 2, 517–556. MR 1769093, DOI 10.1006/jmaa.2000.6872
- R. Bürger, S. Evje, K.H. Karlsen, and K.-A. Lie. Numerical methods for the simulation of the settling of flocculated suspensions. Chem. Eng. J., 80:91–104, 2000.
- R. Bürger and K. Hvistendahl Karlsen, On some upwind difference schemes for the phenomenological sedimentation-consolidation model, J. Engrg. Math. 41 (2001), no. 2-3, 145–166. Sedimentation and suspension flows: some recent contributions (Stuttgart, 1999). MR 1866604, DOI 10.1023/A:1011935232049
- R. Bürger and K. H. Karlsen, On a diffusively corrected kinematic-wave traffic flow model with changing road surface conditions, Math. Models Methods Appl. Sci. 13 (2003), no. 12, 1767–1799. MR 2032211, DOI 10.1142/S0218202503003112
- R. Bürger, K. H. Karlsen, N. H. Risebro, and J. D. Towers, Monotone difference approximations for the simulation of clarifier-thickener units, Comput. Vis. Sci. 6 (2004), no. 2-3, 83–91. MR 2061269, DOI 10.1007/s00791-003-0112-1
- R. Bürger, K. H. Karlsen, N. H. Risebro, and J. D. Towers, Well-posedness in $BV_t$ and convergence of a difference scheme for continuous sedimentation in ideal clarifier-thickener units, Numer. Math. 97 (2004), no. 1, 25–65. MR 2045458, DOI 10.1007/s00211-003-0503-8
- Raimund Bürger, Kenneth H. Karlsen, and John D. Towers, A model of continuous sedimentation of flocculated suspensions in clarifier-thickener units, SIAM J. Appl. Math. 65 (2005), no. 3, 882–940. MR 2136036, DOI 10.1137/04060620X
- R. Bürger, W. L. Wendland, and F. Concha, Model equations for gravitational sedimentation-consolidation processes, ZAMM Z. Angew. Math. Mech. 80 (2000), no. 2, 79–92 (English, with English and German summaries). MR 1742180, DOI 10.1002/(SICI)1521-4001(200002)80:2<79::AID-ZAMM79>3.3.CO;2-P
- José Carrillo, Entropy solutions for nonlinear degenerate problems, Arch. Ration. Mech. Anal. 147 (1999), no. 4, 269–361. MR 1709116, DOI 10.1007/s002050050152
- Aníbal Coronel, François James, and Mauricio Sepúlveda, Numerical identification of parameters for a model of sedimentation processes, Inverse Problems 19 (2003), no. 4, 951–972. MR 2005312, DOI 10.1088/0266-5611/19/4/311
- Michael G. Crandall and Andrew Majda, Monotone difference approximations for scalar conservation laws, Math. Comp. 34 (1980), no. 149, 1–21. MR 551288, DOI 10.1090/S0025-5718-1980-0551288-3
- Michael G. Crandall and Luc Tartar, Some relations between nonexpansive and order preserving mappings, Proc. Amer. Math. Soc. 78 (1980), no. 3, 385–390. MR 553381, DOI 10.1090/S0002-9939-1980-0553381-X
- Klaus Deimling, Nonlinear functional analysis, Springer-Verlag, Berlin, 1985. MR 787404, DOI 10.1007/978-3-662-00547-7
- Björn Engquist and Stanley Osher, One-sided difference approximations for nonlinear conservation laws, Math. Comp. 36 (1981), no. 154, 321–351. MR 606500, DOI 10.1090/S0025-5718-1981-0606500-X
- Magne S. Espedal and Kenneth Hvistendahl Karlsen, Numerical solution of reservoir flow models based on large time step operator splitting algorithms, Filtration in porous media and industrial application (Cetraro, 1998) Lecture Notes in Math., vol. 1734, Springer, Berlin, 2000, pp. 9–77. MR 1816143, DOI 10.1007/BFb0103975
- Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR 1158660
- Steinar Evje and Kenneth Hvistendahl Karlsen, Degenerate convection-diffusion equations and implicit monotone difference schemes, Hyperbolic problems: theory, numerics, applications, Vol. I (Zürich, 1998) Internat. Ser. Numer. Math., vol. 129, Birkhäuser, Basel, 1999, pp. 285–294. MR 1717198
- Steinar Evje and Kenneth Hvistendahl Karlsen, Monotone difference approximations of BV solutions to degenerate convection-diffusion equations, SIAM J. Numer. Anal. 37 (2000), no. 6, 1838–1860. MR 1766850, DOI 10.1137/S0036142998336138
- Robert Eymard, Thierry Gallouët, and Raphaèle Herbin, Finite volume methods, Handbook of numerical analysis, Vol. VII, Handb. Numer. Anal., VII, North-Holland, Amsterdam, 2000, pp. 713–1020. MR 1804748, DOI 10.1016/S1570-8659(00)07005-8
- P. Garrido, R. Burgos, F. Concha, and R. Bürger. Settling velocities of particulate systems: 13. Software for the batch and continuous sedimentation of flocculated suspensions. Int. J. Mineral Process., 73:131–144, 2004.
- Kenneth Hvistendahl Karlsen and Nils Henrik Risebro, Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients, M2AN Math. Model. Numer. Anal. 35 (2001), no. 2, 239–269. MR 1825698, DOI 10.1051/m2an:2001114
- K. H. Karlsen, N. H. Risebro, and J. D. Towers, Upwind difference approximations for degenerate parabolic convection-diffusion equations with a discontinuous coefficient, IMA J. Numer. Anal. 22 (2002), no. 4, 623–664. MR 1937244, DOI 10.1093/imanum/22.4.623
- K. H. Karlsen, N. H. Risebro, and J. D. Towers, $L^1$ stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients, Skr. K. Nor. Vidensk. Selsk. 3 (2003), 1–49. MR 2024741
- S. N. Kružkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.) 81(123) (1970), 228–255 (Russian). MR 267257
- P. Nelson, Traveling-wave solutions of the diffusively corrected kinematic-wave model, Math. Comput. Modelling 35 (2002), no. 5-6, 561–579. Traffic flow—modelling and simulation. MR 1884018, DOI 10.1016/S0895-7177(02)80021-8
- Zhuo Qun Wu, A boundary value problem for quasilinear degenerate parabolic equations, MRC Technical Summary Report, vol. 2484, University of Wisconsin, Center for the Mathematical Sciences, Madison, WI, 1983. MR 725168
- A. I. Vol′pert, Spaces $\textrm {BV}$ and quasilinear equations, Mat. Sb. (N.S.) 73(115) (1967), 255–302 (Russian). MR 216338
- A. I. Vol′pert and S. I. Hudjaev, The Cauchy problem for second order quasilinear degenerate parabolic equations, Mat. Sb. (N.S.) 78(120) (1969), 374–396 (Russian). MR 264232
- Zhuo Qun Wu and Jun Yu Wang, Some results on quasilinear degenerate parabolic equations of second order, Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential Equations, Vol. 1, 2, 3 (Beijing, 1980) Sci. Press Beijing, Beijing, 1982, pp. 1593–1609. MR 714393
Bibliographic Information
- Raimund Bürger
- Affiliation: Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile
- Email: rburger@ing-mat.udec.cl
- Aníbal Coronel
- Affiliation: Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Casilla 447, Campus Fernando May, Chillán, Chile
- Email: acoronel@roble.fdo-may.ubiobio.cl
- Mauricio Sepúlveda
- Affiliation: Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile
- Email: mauricio@ing-mat.udec.cl
- Received by editor(s): May 18, 2004
- Received by editor(s) in revised form: January 18, 2005
- Published electronically: October 21, 2005
- Additional Notes: We acknowledge support by FONDECYT projects 1030718 and 1050728, Fondap in Applied Mathematics, the German Acadamic Exchange Service (DAAD) and CONICYT (Chile) through project Alechile/DAAD/CONICYT 2003154, and the Sonderforschungsbereich 404 at the University of Stuttgart.
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 75 (2006), 91-112
- MSC (2000): Primary 35L65, 35R05, 65M06, 76T20
- DOI: https://doi.org/10.1090/S0025-5718-05-01787-4
- MathSciNet review: 2176391