On monotonicity and boundedness properties of linear multistep methods
HTML articles powered by AMS MathViewer
- by Willem Hundsdorfer and Steven J. Ruuth;
- Math. Comp. 75 (2006), 655-672
- DOI: https://doi.org/10.1090/S0025-5718-05-01794-1
- Published electronically: November 17, 2005
- PDF | Request permission
Abstract:
In this paper an analysis is provided of nonlinear monotonicity and boundedness properties for linear multistep methods. Instead of strict monotonicity for arbitrary starting values we shall focus on generalized monotonicity or boundedness with Runge-Kutta starting procedures. This allows many multistep methods of practical interest to be included in the theory. In a related manner, we also consider contractivity and stability in arbitrary norms.References
- Mohit Tawarmalani and Nikolaos V. Sahinidis, Convexification and global optimization in continuous and mixed-integer nonlinear programming, Nonconvex Optimization and its Applications, vol. 65, Kluwer Academic Publishers, Dordrecht, 2002. Theory, algorithms, software, and applications. MR 1961018, DOI 10.1007/978-1-4757-3532-1
- Germund Dahlquist, Error analysis for a class of methods for stiff non-linear initial value problems, Numerical analysis (Proc. 6th Biennial Dundee Conf., Univ. Dundee, Dundee, 1975) Lecture Notes in Math., Vol. 506, Springer, Berlin-New York, 1976, pp. 60–72. MR 448898
- L. Ferracina and M. N. Spijker, Stepsize restrictions for total-variation-boundedness in general Runge-Kutta procedures, Appl. Numer. Math. 53 (2005), no. 2-4, 265–279. MR 2128526, DOI 10.1016/j.apnum.2004.08.024
- Sigal Gottlieb, Chi-Wang Shu, and Eitan Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Rev. 43 (2001), no. 1, 89–112. MR 1854647, DOI 10.1137/S003614450036757X
- E. Hairer, S. P. Nørsett, and G. Wanner, Solving ordinary differential equations. I, 2nd ed., Springer Series in Computational Mathematics, vol. 8, Springer-Verlag, Berlin, 1993. Nonstiff problems. MR 1227985
- E. Hairer and G. Wanner, Solving ordinary differential equations. II, 2nd ed., Springer Series in Computational Mathematics, vol. 14, Springer-Verlag, Berlin, 1996. Stiff and differential-algebraic problems. MR 1439506, DOI 10.1007/978-3-642-05221-7
- Willem Hundsdorfer, Steven J. Ruuth, and Raymond J. Spiteri, Monotonicity-preserving linear multistep methods, SIAM J. Numer. Anal. 41 (2003), no. 2, 605–623. MR 2004190, DOI 10.1137/S0036142902406326
- Willem Hundsdorfer and Jan Verwer, Numerical solution of time-dependent advection-diffusion-reaction equations, Springer Series in Computational Mathematics, vol. 33, Springer-Verlag, Berlin, 2003. MR 2002152, DOI 10.1007/978-3-662-09017-6
- Rolf Jeltsch and Olavi Nevanlinna, Stability of explicit time discretizations for solving initial value problems, Numer. Math. 37 (1981), no. 1, 61–91. MR 615892, DOI 10.1007/BF01396187
- H. W. J. Lenferink, Contractivity preserving explicit linear multistep methods, Numer. Math. 55 (1989), no. 2, 213–223. MR 987386, DOI 10.1007/BF01406515
- H. W. J. Lenferink, Contractivity-preserving implicit linear multistep methods, Math. Comp. 56 (1991), no. 193, 177–199. MR 1052098, DOI 10.1090/S0025-5718-1991-1052098-0
- Randall J. LeVeque, Finite volume methods for hyperbolic problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002. MR 1925043, DOI 10.1017/CBO9780511791253
- S.J. Ruuth, W. Hundsdorfer, High-order linear multistep methods with general monotonicity and boundedness properties. To appear in J. Comp. Phys., 2005.
- Jørgen Sand, Circle contractive linear multistep methods, BIT 26 (1986), no. 1, 114–122. MR 833836, DOI 10.1007/BF01939367
- Chi-Wang Shu, TVB uniformly high-order schemes for conservation laws, Math. Comp. 49 (1987), no. 179, 105–121. MR 890256, DOI 10.1090/S0025-5718-1987-0890256-5
- Chi-Wang Shu, Total-variation-diminishing time discretizations, SIAM J. Sci. Statist. Comput. 9 (1988), no. 6, 1073–1084. MR 963855, DOI 10.1137/0909073
- M. N. Spijker, Contractivity in the numerical solution of initial value problems, Numer. Math. 42 (1983), no. 3, 271–290. MR 723625, DOI 10.1007/BF01389573
- Reiner Vanselow, Nonlinear stability behaviour of linear multistep methods, BIT 23 (1983), no. 3, 388–396. MR 705005, DOI 10.1007/BF01934467
Bibliographic Information
- Willem Hundsdorfer
- Affiliation: CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
- Email: willem.hundsdorfer@cwi.nl
- Steven J. Ruuth
- Affiliation: Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, V5A 1S6 Canada
- Email: sruuth@sfu.ca
- Received by editor(s): March 10, 2004
- Received by editor(s) in revised form: January 6, 2005
- Published electronically: November 17, 2005
- Additional Notes: The work of the second author was partially supported by a grant from NSERC Canada.
- © Copyright 2005 American Mathematical Society
- Journal: Math. Comp. 75 (2006), 655-672
- MSC (2000): Primary 65L06, 65M06, 65M20
- DOI: https://doi.org/10.1090/S0025-5718-05-01794-1
- MathSciNet review: 2196985