Structured preconditioners for nonsingular matrices of block two-by-two structures
HTML articles powered by AMS MathViewer
- by Zhong-Zhi Bai;
- Math. Comp. 75 (2006), 791-815
- DOI: https://doi.org/10.1090/S0025-5718-05-01801-6
- Published electronically: November 30, 2005
- HTML | PDF | Request permission
Abstract:
For the large sparse block two-by-two real nonsingular matrices, we establish a general framework of practical and efficient structured preconditioners through matrix transformation and matrix approximations. For the specific versions such as modified block Jacobi-type, modified block Gauss-Seidel-type, and modified block unsymmetric (symmetric) Gauss-Seidel-type preconditioners, we precisely describe their concrete expressions and deliberately analyze eigenvalue distributions and positive definiteness of the preconditioned matrices. Also, we show that when these structured preconditioners are employed to precondition the Krylov subspace methods such as GMRES and restarted GMRES, fast and effective iteration solvers can be obtained for the large sparse systems of linear equations with block two-by-two coefficient matrices. In particular, these structured preconditioners can lead to efficient and high-quality preconditioning matrices for some typical matrices from the real-world applications.References
- Habib Ammari, Gang Bao, and Aihua W. Wood, An integral equation method for the electromagnetic scattering from cavities, Math. Methods Appl. Sci. 23 (2000), no. 12, 1057–1072. MR 1773922, DOI 10.1002/1099-1476(200008)23:12<1057::AID-MMA151>3.0.CO;2-6
- Owe Axelsson, Iterative solution methods, Cambridge University Press, Cambridge, 1994. MR 1276069, DOI 10.1017/CBO9780511624100
- Z.-Z. Bai, Parallel Iterative Methods for Large-Scale Systems of Algebraic Equations, Ph.D. Thesis of Shanghai University of Science and Technology, Shanghai, June 1993. (In Chinese)
- Zhongzhi Bai, A class of hybrid algebraic multilevel preconditioning methods, Appl. Numer. Math. 19 (1996), no. 4, 389–399. MR 1377785, DOI 10.1016/0168-9274(95)00106-9
- Zhong-Zhi Bai, Parallel hybrid algebraic multilevel iterative methods, Linear Algebra Appl. 267 (1997), 281–315. MR 1479124, DOI 10.1016/S0024-3795(97)00024-4
- Zhong-Zhi Bai, A class of modified block SSOR preconditioners for symmetric positive definite systems of linear equations, Adv. Comput. Math. 10 (1999), no. 2, 169–186. MR 1680610, DOI 10.1023/A:1018974514896
- Zhong-Zhi Bai, Mofidied block SSOR preconditioners for symmetric positive definite linear systems, Ann. Oper. Res. 103 (2001), 263–282. Optimization and numerical algebra (Nanjing, 1999). MR 1868455, DOI 10.1023/A:1012915424955
- Zhong-Zhi Bai, Iain S. Duff, and Andrew J. Wathen, A class of incomplete orthogonal factorization methods. I. Methods and theories, BIT 41 (2001), no. 1, 53–70. MR 1829661, DOI 10.1023/A:1021913700691
- Zhong-Zhi Bai and Gui-Qing Li, Restrictively preconditioned conjugate gradient methods for systems of linear equations, IMA J. Numer. Anal. 23 (2003), no. 4, 561–580. MR 2011340, DOI 10.1093/imanum/23.4.561
- Z.-Z. Bai and M.K. Ng, On inexact preconditioners for nonsymmetric matrices, SIAM J. Sci. Comput., 26(2005), 1710-1724.
- Z.-Z. Bai and Z.-Q. Wang, Restrictive preconditioners for conjugate gradient methods for symmetric positive definite linear systems, J. Comput. Appl. Math., 187(2006), 202-226.
- Zhongzhi Bai and Deren Wang, A class of new hybrid algebraic multilevel preconditioning methods, Linear Algebra Appl. 260 (1997), 223–255. MR 1448358, DOI 10.1016/S0024-3795(97)80012-2
- John T. Betts, Practical methods for optimal control using nonlinear programming, Advances in Design and Control, vol. 3, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001. MR 1826768
- Åke Björck, Numerical methods for least squares problems, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. MR 1386889, DOI 10.1137/1.9781611971484
- James H. Bramble, Joseph E. Pasciak, and Apostol T. Vassilev, Analysis of the inexact Uzawa algorithm for saddle point problems, SIAM J. Numer. Anal. 34 (1997), no. 3, 1072–1092. MR 1451114, DOI 10.1137/S0036142994273343
- Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. MR 1115205, DOI 10.1007/978-1-4612-3172-1
- I. S. Duff, N. I. M. Gould, J. K. Reid, J. A. Scott, and K. Turner, The factorization of sparse symmetric indefinite matrices, IMA J. Numer. Anal. 11 (1991), no. 2, 181–204. MR 1105227, DOI 10.1093/imanum/11.2.181
- I. S. Duff and J. K. Reid, Exploiting zeros on the diagonal in the direct solution of indefinite sparse symmetric linear systems, ACM Trans. Math. Software 22 (1996), no. 2, 227–257. MR 1408491, DOI 10.1145/229473.229480
- Nira Dyn and Warren E. Ferguson Jr., The numerical solution of equality constrained quadratic programming problems, Math. Comp. 41 (1983), no. 163, 165–170. MR 701631, DOI 10.1090/S0025-5718-1983-0701631-X
- Stanley C. Eisenstat, Howard C. Elman, and Martin H. Schultz, Variational iterative methods for nonsymmetric systems of linear equations, SIAM J. Numer. Anal. 20 (1983), no. 2, 345–357. MR 694523, DOI 10.1137/0720023
- Howard C. Elman, Preconditioners for saddle point problems arising in computational fluid dynamics, Appl. Numer. Math. 43 (2002), no. 1-2, 75–89. 19th Dundee Biennial Conference on Numerical Analysis (2001). MR 1936103, DOI 10.1016/S0168-9274(02)00118-6
- Howard C. Elman and Gene H. Golub, Inexact and preconditioned Uzawa algorithms for saddle point problems, SIAM J. Numer. Anal. 31 (1994), no. 6, 1645–1661. MR 1302679, DOI 10.1137/0731085
- Howard C. Elman, David J. Silvester, and Andrew J. Wathen, Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations, Numer. Math. 90 (2002), no. 4, 665–688. MR 1888834, DOI 10.1007/s002110100300
- B. Fischer, A. Ramage, D. J. Silvester, and A. J. Wathen, Minimum residual methods for augmented systems, BIT 38 (1998), no. 3, 527–543. MR 1652781, DOI 10.1007/BF02510258
- Philip E. Gill, Walter Murray, and Margaret H. Wright, Practical optimization, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1981. MR 634376
- Roland Glowinski, Numerical methods for nonlinear variational problems, Springer Series in Computational Physics, Springer-Verlag, New York, 1984. MR 737005, DOI 10.1007/978-3-662-12613-4
- Gene H. Golub and Charles F. Van Loan, Matrix computations, 3rd ed., Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 1996. MR 1417720
- Gene H. Golub and Andrew J. Wathen, An iteration for indefinite systems and its application to the Navier-Stokes equations, SIAM J. Sci. Comput. 19 (1998), no. 2, 530–539. MR 1618828, DOI 10.1137/S106482759529382X
- Gene H. Golub, X. Wu, and Jin-Yun Yuan, SOR-like methods for augmented systems, BIT 41 (2001), no. 1, 71–85. MR 1829662, DOI 10.1023/A:1021965717530
- Nicholas I. M. Gould, Mary E. Hribar, and Jorge Nocedal, On the solution of equality constrained quadratic programming problems arising in optimization, SIAM J. Sci. Comput. 23 (2001), no. 4, 1376–1395. MR 1885606, DOI 10.1137/S1064827598345667
- Eldad Haber, Uri M. Ascher, and Doug Oldenburg, On optimization techniques for solving nonlinear inverse problems, Inverse Problems 16 (2000), no. 5, 1263–1280. Electromagnetic imaging and inversion of the Earth’s subsurface. MR 1798355, DOI 10.1088/0266-5611/16/5/309
- Apostolos Hadjidimos, Accelerated overrelaxation method, Math. Comp. 32 (1978), no. 141, 149–157. MR 483340, DOI 10.1090/S0025-5718-1978-0483340-6
- Jianming Jin, The finite element method in electromagnetics, 2nd ed., Wiley-Interscience [John Wiley & Sons], New York, 2002. MR 1903357
- Carsten Keller, Nicholas I. M. Gould, and Andrew J. Wathen, Constraint preconditioning for indefinite linear systems, SIAM J. Matrix Anal. Appl. 21 (2000), no. 4, 1300–1317. MR 1780274, DOI 10.1137/S0895479899351805
- Axel Klawonn, Block-triangular preconditioners for saddle point problems with a penalty term, SIAM J. Sci. Comput. 19 (1998), no. 1, 172–184. Special issue on iterative methods (Copper Mountain, CO, 1996). MR 1616885, DOI 10.1137/S1064827596303624
- Peter A. Markowich, The stationary semiconductor device equations, Computational Microelectronics, Springer-Verlag, Vienna, 1986. MR 821965, DOI 10.1007/978-3-7091-3678-2
- Malcolm F. Murphy, Gene H. Golub, and Andrew J. Wathen, A note on preconditioning for indefinite linear systems, SIAM J. Sci. Comput. 21 (2000), no. 6, 1969–1972. MR 1762024, DOI 10.1137/S1064827599355153
- I. Perugia and V. Simoncini, Block-diagonal and indefinite symmetric preconditioners for mixed finite element formulations, Numer. Linear Algebra Appl. 7 (2000), no. 7-8, 585–616. Preconditioning techniques for large sparse matrix problems in industrial applications (Minneapolis, MN, 1999). MR 1802361, DOI 10.1002/1099-1506(200010/12)7:7/8<585::AID-NLA214>3.3.CO;2-6
- Robert J. Plemmons, A parallel block iterative scheme applied to computations in structural analysis, SIAM J. Algebraic Discrete Methods 7 (1986), no. 3, 337–347. MR 844035, DOI 10.1137/0607038
- Yousef Saad, Iterative methods for sparse linear systems, 2nd ed., Society for Industrial and Applied Mathematics, Philadelphia, PA, 2003. MR 1990645, DOI 10.1137/1.9780898718003
- Youcef Saad and Martin H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 7 (1986), no. 3, 856–869. MR 848568, DOI 10.1137/0907058
- Guido E. Sartoris, A 3D rectangular mixed finite element method to solve the stationary semiconductor equations, SIAM J. Sci. Comput. 19 (1998), no. 2, 387–403. MR 1618875, DOI 10.1137/S1064827594275091
- S. Selberherr, Analysis and Simulation of Semiconductor Devices, Springer-Verlag, New York, 1984.
- Gilbert Strang, Introduction to applied mathematics, Wellesley-Cambridge Press, Wellesley, MA, 1986. MR 870634
- Walter Zulehner, Analysis of iterative methods for saddle point problems: a unified approach, Math. Comp. 71 (2002), no. 238, 479–505. MR 1885611, DOI 10.1090/S0025-5718-01-01324-2
Bibliographic Information
- Zhong-Zhi Bai
- Affiliation: State Key Laboratory of Scientific/Engineering Computing, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100080, People’s Republic of China
- Email: bzz@lsec.cc.ac.cn
- Received by editor(s): October 16, 2003
- Received by editor(s) in revised form: March 16, 2005
- Published electronically: November 30, 2005
- Additional Notes: Subsidized by The Special Funds For Major State Basic Research Projects (No. G1999032803), The National Basic Research Program (No. 2005CB321702), and The National Natural Science Foundation (No. 10471146), P.R. China
- © Copyright 2005 American Mathematical Society
- Journal: Math. Comp. 75 (2006), 791-815
- MSC (2000): Primary 65F10, 65F50
- DOI: https://doi.org/10.1090/S0025-5718-05-01801-6
- MathSciNet review: 2196992