CM-fields with relative class number one
HTML articles powered by AMS MathViewer
- by Geon-No Lee and Soun-Hi Kwon;
- Math. Comp. 75 (2006), 997-1013
- DOI: https://doi.org/10.1090/S0025-5718-05-01811-9
- Published electronically: November 29, 2005
- PDF | Request permission
Abstract:
We will show that the normal CM-fields with relative class number one are of degrees $\leq 216$. Moreover, if we assume the Generalized Riemann Hypothesis, then the normal CM-fields with relative class number one are of degrees $\leq 96$, and the CM-fields with class number one are of degrees $\leq 104$. By many authors all normal CM-fields of degrees $\leq 96$ with class number one are known except for the possible fields of degree $64$ or $96$. Consequently the class number one problem for normal CM-fields is solved under the Generalized Riemann Hypothesis except for these two cases.References
- Sofiène Bessassi, Bounds for the degrees of CM-fields of class number one, Acta Arith. 106 (2003), no. 3, 213–245. MR 1957106, DOI 10.4064/aa106-3-2
- Ku-Young Chang and Soun-Hi Kwon, Class numbers of imaginary abelian number fields, Proc. Amer. Math. Soc. 128 (2000), no. 9, 2517–2528. MR 1707511, DOI 10.1090/S0002-9939-00-05555-6
- Ku-Young Chang and Soun-Hi Kwon, The non-abelian normal CM-fields of degree 36 with class number one, Acta Arith. 101 (2002), no. 1, 53–61. MR 1879845, DOI 10.4064/aa101-1-4
- Ku-Young Chang and Soun-Hi Kwon, The class number one problem for some non-abelian normal CM-fields of degree 48, Math. Comp. 72 (2003), no. 242, 1003–1017. MR 1954981, DOI 10.1090/S0025-5718-02-01443-6
- Jeffrey Hoffstein, Some analytic bounds for zeta functions and class numbers, Invent. Math. 55 (1979), no. 1, 37–47. MR 553994, DOI 10.1007/BF02139701
- Marshall Hall Jr. and James K. Senior, The groups of order $2^{n}\,(n\leq 6)$, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1964. MR 168631
- Rodney James, M. F. Newman, and E. A. O’Brien, The groups of order $128$, J. Algebra 129 (1990), no. 1, 136–158. MR 1037398, DOI 10.1016/0021-8693(90)90244-I
- Yann Lefeuvre, Corps diédraux à multiplication complexe principaux, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 1, 67–103 (French, with English and French summaries). MR 1762338, DOI 10.5802/aif.1747
- F. Lemmermeyer, S. Louboutin, and R. Okazaki, The class number one problem for some non-abelian normal CM-fields of degree 24, J. Théor. Nombres Bordeaux 11 (1999), no. 2, 387–406 (English, with English and French summaries). MR 1745886, DOI 10.5802/jtnb.257
- Stéphane Louboutin and Ryotaro Okazaki, Determination of all non-normal quartic CM-fields and of all non-abelian normal octic CM-fields with class number one, Acta Arith. 67 (1994), no. 1, 47–62. MR 1292520, DOI 10.4064/aa-67-1-47-62
- Stéphane Louboutin and Ryotaro Okazaki, The class number one problem for some non-abelian normal CM-fields of $2$-power degrees, Proc. London Math. Soc. (3) 76 (1998), no. 3, 523–548. MR 1616805, DOI 10.1112/S0024611598000318
- Stéphane Louboutin, Ryotaro Okazaki, and Michel Olivier, The class number one problem for some non-abelian normal CM-fields, Trans. Amer. Math. Soc. 349 (1997), no. 9, 3657–3678. MR 1390044, DOI 10.1090/S0002-9947-97-01768-6
- Stéphane Louboutin, The class number one problem for the non-abelian normal CM-fields of degree $16$, Acta Arith. 82 (1997), no. 2, 173–196. MR 1477509, DOI 10.4064/aa-82-2-173-196
- Stéphane Louboutin, Explicit bounds for residues of Dedekind zeta functions, values of $L$-functions at $s=1$, and relative class numbers, J. Number Theory 85 (2000), no. 2, 263–282. MR 1802716, DOI 10.1006/jnth.2000.2545
- Stéphane Louboutin, Explicit lower bounds for residues at $s=1$ of Dedekind zeta functions and relative class numbers of CM-fields, Trans. Amer. Math. Soc. 355 (2003), no. 8, 3079–3098. MR 1974676, DOI 10.1090/S0002-9947-03-03313-0
- S. Louboutin, Y.-H. Park, K.-Y. Chang, and S.-H. Kwon, The class number one problem for the non-abelian normal CM-fields of degree $2pq$, Preprint.
- G. A. Miller, Determination of All the Groups of Order 64, Amer. J. Math. 52 (1930), no. 3, 617–634. MR 1507920, DOI 10.2307/2370630
- A. M. Odlyzko, Some analytic estimates of class numbers and discriminants, Invent. Math. 29 (1975), no. 3, 275–286. MR 376613, DOI 10.1007/BF01389854
- A. M. Odlyzko, Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results, Sém. Théor. Nombres Bordeaux (2) 2 (1990), no. 1, 119–141 (English, with French summary). MR 1061762, DOI 10.5802/jtnb.22
- E. A. O’Brien, The groups of order dividing $256$, Bull. Austral. Math. Soc., 39(1989), 159-160.
- Young-Ho Park, The class number one problem for the non-abelian normal CM-fields of degree 24 and 40, Acta Arith. 101 (2002), no. 1, 63–80. MR 1879844, DOI 10.4064/aa101-1-5
- Georges Poitou, Minorations de discriminants (d’après A. M. Odlyzko), Séminaire Bourbaki, Vol. 1975/76, 28ème année, Lecture Notes in Math., Vol. 567, Springer, Berlin-New York, 1977, pp. Exp. No. 479, pp. 136–153. MR 435033
- Georges Poitou, Sur les petits discriminants, Séminaire Delange-Pisot-Poitou, 18e année: 1976/77, Théorie des nombres, Fasc. 1, Secrétariat Math., Paris, 1977, pp. Exp. No. 6, 18 (French). MR 551335
- S.-M. Park and S.-H. Kwon, Class number one problem for normal CM-fields, Preprint.
- S.-M. Park, H.-S. Yang, and S.-H. Kwon, Class number one problem for the normal CM-fields of degree $32$, Preprint.
- H. M. Stark, Some effective cases of the Brauer-Siegel theorem, Invent. Math. 23 (1974), 135–152. MR 342472, DOI 10.1007/BF01405166
- A. D. Thomas and G. V. Wood, Group tables, Shiva Mathematics Series, vol. 2, Shiva Publishing Ltd., Nantwich; distributed by Birkhäuser Boston, Inc., Boston, MA, 1980. MR 572793
- Lawrence C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997. MR 1421575, DOI 10.1007/978-1-4612-1934-7
- http://mathworld.wolfram.com/Finitegoup.html.
- Ken Yamamura, The determination of the imaginary abelian number fields with class number one, Math. Comp. 62 (1994), no. 206, 899–921. MR 1218347, DOI 10.1090/S0025-5718-1994-1218347-3
Bibliographic Information
- Geon-No Lee
- Affiliation: Department of Mathematics Education, Korea University, 136-701, Seoul, Korea
- Email: thisknow@korea.ac.kr
- Soun-Hi Kwon
- Affiliation: Department of Mathematics Education, Korea University, 136-701, Seoul, Korea
- Email: sounhikwon@korea.ac.kr
- Received by editor(s): January 19, 2005
- Received by editor(s) in revised form: February 27, 2005
- Published electronically: November 29, 2005
- © Copyright 2005
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 75 (2006), 997-1013
- MSC (2000): Primary 11R29, 11R42
- DOI: https://doi.org/10.1090/S0025-5718-05-01811-9
- MathSciNet review: 2197004