Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems
HTML articles powered by AMS MathViewer
- by Thomas P. Wihler;
- Math. Comp. 75 (2006), 1087-1102
- DOI: https://doi.org/10.1090/S0025-5718-06-01815-1
- Published electronically: January 20, 2006
- PDF | Request permission
Abstract:
An adaptive discontinuous Galerkin finite element method for linear elasticity problems is presented. We develop an a posteriori error estimate and prove its robustness with respect to nearly incompressible materials (absence of volume locking). Furthermore, we present some numerical experiments which illustrate the performance of the scheme on adaptively refined meshes.References
- Douglas N. Arnold, Franco Brezzi, Bernardo Cockburn, and L. Donatella Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001/02), no. 5, 1749–1779. MR 1885715, DOI 10.1137/S0036142901384162
- Ivo Babuška and Manil Suri, On locking and robustness in the finite element method, SIAM J. Numer. Anal. 29 (1992), no. 5, 1261–1293. MR 1182731, DOI 10.1137/0729075
- Garth A. Baker, Finite element methods for elliptic equations using nonconforming elements, Math. Comp. 31 (1977), no. 137, 45–59. MR 431742, DOI 10.1090/S0025-5718-1977-0431742-5
- Roland Becker, Peter Hansbo, and Mats G. Larson, Energy norm a posteriori error estimation for discontinuous Galerkin methods, Comput. Methods Appl. Mech. Engrg. 192 (2003), no. 5-6, 723–733. MR 1952357, DOI 10.1016/S0045-7825(02)00593-5
- Susanne C. Brenner, Korn’s inequalities for piecewise $H^1$ vector fields, Math. Comp. 73 (2004), no. 247, 1067–1087. MR 2047078, DOI 10.1090/S0025-5718-03-01579-5
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, 2nd ed., Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 2002. MR 1894376, DOI 10.1007/978-1-4757-3658-8
- Susanne C. Brenner and Li-Yeng Sung, Linear finite element methods for planar linear elasticity, Math. Comp. 59 (1992), no. 200, 321–338. MR 1140646, DOI 10.1090/S0025-5718-1992-1140646-2
- Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. MR 1115205, DOI 10.1007/978-1-4612-3172-1
- Carsten Carstensen and Stefan A. Funken, Averaging technique for a posteriori error control in elasticity. III. Locking-free nonconforming FEM, Comput. Methods Appl. Mech. Engrg. 191 (2001), no. 8-10, 861–877. MR 1870519, DOI 10.1016/S0045-7825(01)00202-X
- Dominique Chapelle and Rolf Stenberg, Locking-free mixed stabilized finite element methods for bending-dominated shells, Plates and shells (Québec, QC, 1996) CRM Proc. Lecture Notes, vol. 21, Amer. Math. Soc., Providence, RI, 1999, pp. 81–94. MR 1696529, DOI 10.1090/crmp/021/06
- Jim Douglas Jr. and Todd Dupont, Interior penalty procedures for elliptic and parabolic Galerkin methods, Computing methods in applied sciences (Second Internat. Sympos., Versailles, 1975) Lecture Notes in Phys., Vol. 58, Springer, Berlin-New York, 1976, pp. 207–216. MR 440955
- Peter Hansbo and Mats G. Larson, Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche’s method, Comput. Methods Appl. Mech. Engrg. 191 (2002), no. 17-18, 1895–1908. MR 1886000, DOI 10.1016/S0045-7825(01)00358-9
- Paul Houston, Ilaria Perugia, and Dominik Schötzau, Mixed discontinuous Galerkin approximation of the Maxwell operator, SIAM J. Numer. Anal. 42 (2004), no. 1, 434–459. MR 2051073, DOI 10.1137/S003614290241790X
- Paul Houston, Ilaria Perugia, and Dominik Schötzau, Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Maxwell operator, Comput. Methods Appl. Mech. Engrg. 194 (2005), no. 2-5, 499–510. MR 2105178, DOI 10.1016/j.cma.2004.02.025
- Paul Houston, Dominik Schötzau, and Thomas P. Wihler, Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Stokes problem, J. Sci. Comput. 22/23 (2005), 347–370. MR 2142201, DOI 10.1007/s10915-004-4142-8
- P. Houston, D. Schötzau, and T. P. Wihler. An $hp$-adaptive mixed discontinuous Galerkin FEM for nearly incompressible linear elasticity. Comput. Methods Appl. Mech. Engrg. (to appear).
- Ohannes A. Karakashian and Frederic Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems, SIAM J. Numer. Anal. 41 (2003), no. 6, 2374–2399. MR 2034620, DOI 10.1137/S0036142902405217
- Reijo Kouhia and Rolf Stenberg, A linear nonconforming finite element method for nearly incompressible elasticity and Stokes flow, Comput. Methods Appl. Mech. Engrg. 124 (1995), no. 3, 195–212. MR 1343077, DOI 10.1016/0045-7825(95)00829-P
- O. A. Oleĭnik, A. S. Shamaev, and G. A. Yosifian, Mathematical problems in elasticity and homogenization, Studies in Mathematics and its Applications, vol. 26, North-Holland Publishing Co., Amsterdam, 1992. MR 1195131
- Ilaria Perugia and Dominik Schötzau, An $hp$-analysis of the local discontinuous Galerkin method for diffusion problems, Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), 2002, pp. 561–571. MR 1910752, DOI 10.1023/A:1015118613130
- B. Rivière and M. F. Wheeler, A posteriori error estimates for a discontinuous Galerkin method applied to elliptic problems. Log number: R74, Comput. Math. Appl. 46 (2003), no. 1, 141–163. $p$-FEM2000: $p$ and $hp$ finite element methods—mathematics and engineering practice (St. Louis, MO). MR 2015276, DOI 10.1016/S0898-1221(03)90086-1
- Dominik Schötzau, Christoph Schwab, and Andrea Toselli, Mixed $hp$-DGFEM for incompressible flows, SIAM J. Numer. Anal. 40 (2002), no. 6, 2171–2194 (2003). MR 1974180, DOI 10.1137/S0036142901399124
- R. Verfürth. A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. B.G. Teubner, Stuttgart, 1996.
- Michael Vogelius, A right-inverse for the divergence operator in spaces of piecewise polynomials. Application to the $p$-version of the finite element method, Numer. Math. 41 (1983), no. 1, 19–37. MR 696548, DOI 10.1007/BF01396303
- Mary Fanett Wheeler, An elliptic collocation-finite element method with interior penalties, SIAM J. Numer. Anal. 15 (1978), no. 1, 152–161. MR 471383, DOI 10.1137/0715010
- Thomas P. Wihler, Locking-free DGFEM for elasticity problems in polygons, IMA J. Numer. Anal. 24 (2004), no. 1, 45–75. MR 2027288, DOI 10.1093/imanum/24.1.45
Bibliographic Information
- Thomas P. Wihler
- Affiliation: Department of Mathematics and Statistics, McGill University, Montreal, Quebec, Canada H3A 2K6
- MR Author ID: 662940
- ORCID: 0000-0003-1232-0637
- Email: wihler@math.mcgill.ca
- Received by editor(s): November 5, 2003
- Received by editor(s) in revised form: December 20, 2004, and November 7, 2005
- Published electronically: January 20, 2006
- Additional Notes: This work was supported by the Swiss National Science Foundation, Project PBEZ2-102321
- © Copyright 2006 American Mathematical Society
- Journal: Math. Comp. 75 (2006), 1087-1102
- MSC (2000): Primary 65N30
- DOI: https://doi.org/10.1090/S0025-5718-06-01815-1
- MathSciNet review: 2219020