Pointwise error estimates for discontinuous Galerkin methods with lifting operators for elliptic problems
HTML articles powered by AMS MathViewer
- by Johnny Guzmán;
- Math. Comp. 75 (2006), 1067-1085
- DOI: https://doi.org/10.1090/S0025-5718-06-01823-0
- Published electronically: March 3, 2006
- PDF | Request permission
Abstract:
In this article, we prove some weighted pointwise estimates for three discontinuous Galerkin methods with lifting operators appearing in their corresponding bilinear forms. We consider a Dirichlet problem with a general second-order elliptic operator.References
- Douglas N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982), no. 4, 742–760. MR 664882, DOI 10.1137/0719052
- Douglas N. Arnold, Franco Brezzi, Bernardo Cockburn, and L. Donatella Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001/02), no. 5, 1749–1779. MR 1885715, DOI 10.1137/S0036142901384162
- F. Bassi, S. Rebay, G. Marrioti, S. Pendinotti, and M. Savini, A high-order accurate discontinuous finite element method for inviscid and viscuous turbomachinery flows, In Proceedings of 2nd European Conference on Turbomachinery, Fluid Dynamics and Thermodynamics(R. Decuypere and G. Dibelius, eds.), Technologisch Instituut, Antwerpen, Belgium, 1997, 99-108.
- F. Brezzi, G. Manzini, D. Marini, P. Pietra, and A. Russo, Discontinuous Galerkin approximations for elliptic problems, Numer. Methods Partial Differential Equations 16 (2000), no. 4, 365–378. MR 1765651, DOI 10.1002/1098-2426(200007)16:4<365::AID-NUM2>3.0.CO;2-Y
- H. Chen, Local error estimates of mixed discontinuous Galerkin methods for elliptic problems, J. Numer. Math. 12 (2004), no. 1, 1–21. MR 2039367, DOI 10.1163/1569395041172926
- Zhangxin Chen and Hongsen Chen, Pointwise error estimates of discontinuous Galerkin methods with penalty for second-order elliptic problems, SIAM J. Numer. Anal. 42 (2004), no. 3, 1146–1166. MR 2113680, DOI 10.1137/S0036142903421527
- Jim Douglas Jr., Todd Dupont, and Lars Wahlbin, The stability in $L^{q}$ of the $L^{2}$-projection into finite element function spaces, Numer. Math. 23 (1974/75), 193–197. MR 383789, DOI 10.1007/BF01400302
- G. Kanschat and R. Rannacher, Local error analysis of the interior penalty discontinuous Galerkin method for second order elliptic problems, J. Numer. Math. 10 (2002), no. 4, 249–274. MR 1954085, DOI 10.1515/JNMA.2002.249
- Joachim A. Nitsche and Alfred H. Schatz, Interior estimates for Ritz-Galerkin methods, Math. Comp. 28 (1974), 937–958. MR 373325, DOI 10.1090/S0025-5718-1974-0373325-9
- Alfred H. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms, Math. Comp. 28 (1974), 959–962. MR 373326, DOI 10.1090/S0025-5718-1974-0373326-0
- A. H. Schatz and L. B. Wahlbin, Interior maximum norm estimates for finite element methods, Math. Comp. 31 (1977), no. 138, 414–442. MR 431753, DOI 10.1090/S0025-5718-1977-0431753-X
- Alfred H. Schatz, Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids. I. Global estimates, Math. Comp. 67 (1998), no. 223, 877–899. MR 1464148, DOI 10.1090/S0025-5718-98-00959-4
- Lars B. Wahlbin, Local behavior in finite element methods, Handbook of numerical analysis, Vol. II, Handb. Numer. Anal., II, North-Holland, Amsterdam, 1991, pp. 353–522. MR 1115238
Bibliographic Information
- Johnny Guzmán
- Affiliation: Center for Applied Mathematics, Cornell University, 657 Rhodes Hall, Ithaca, New York 14853
- MR Author ID: 775211
- Email: jguzman@cam.cornell.edu
- Received by editor(s): June 27, 2004
- Received by editor(s) in revised form: April 19, 2005
- Published electronically: March 3, 2006
- Additional Notes: The author was supported by a Ford Foundation Fellowship and a Cornell-Sloan Fellowship
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 75 (2006), 1067-1085
- MSC (2000): Primary 65N30, 65N15
- DOI: https://doi.org/10.1090/S0025-5718-06-01823-0
- MathSciNet review: 2219019