Wavelets on manifolds: An optimized construction
HTML articles powered by AMS MathViewer
- by Angela Kunoth and Jan Sahner;
- Math. Comp. 75 (2006), 1319-1349
- DOI: https://doi.org/10.1090/S0025-5718-06-01828-X
- Published electronically: May 3, 2006
- PDF | Request permission
Abstract:
A key ingredient of the construction of biorthogonal wavelet bases for Sobolev spaces on manifolds, which is based on topological isomorphisms is the Hestenes extension operator. Here we firstly investigate whether this particular extension operator can be replaced by another extension operator. Our main theoretical result states that an important class of extension operators based on interpolating boundary values cannot be used in the construction setting required by Dahmen and Schneider. In the second part of this paper, we investigate and optimize the Hestenes extension operator. The results of the optimization process allow us to implement the construction of biorthogonal wavelets from Dahmen and Schneider. As an example, we illustrate a wavelet basis on the 2-sphere.References
- Robert A. Adams, Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 450957
- D. Bertsekas, Nonlinear Programming, Athena Scientific, 1999.
- Carl de Boor, A practical guide to splines, Applied Mathematical Sciences, vol. 27, Springer-Verlag, New York-Berlin, 1978. MR 507062
- Z. Ciesielski and T. Figiel, Spline bases in classical function spaces on compact $C^{\infty }$ manifolds. I, Studia Math. 76 (1983), no. 1, 1–58. MR 728195, DOI 10.4064/sm-76-1-1-58
- Claudio Canuto, Anita Tabacco, and Karsten Urban, The wavelet element method. I. Construction and analysis, Appl. Comput. Harmon. Anal. 6 (1999), no. 1, 1–52. MR 1664902, DOI 10.1006/acha.1997.0242
- Wolfgang Dahmen, Angela Kunoth, and Karsten Urban, Biorthogonal spline wavelets on the interval—stability and moment conditions, Appl. Comput. Harmon. Anal. 6 (1999), no. 2, 132–196. MR 1676771, DOI 10.1006/acha.1998.0247
- Wolfgang Dahmen and Reinhold Schneider, Wavelets on manifolds. I. Construction and domain decomposition, SIAM J. Math. Anal. 31 (1999), no. 1, 184–230. MR 1742299, DOI 10.1137/S0036141098333451
- Wolfgang Dahmen and Reinhold Schneider, Composite wavelet bases for operator equations, Math. Comp. 68 (1999), no. 228, 1533–1567. MR 1648379, DOI 10.1090/S0025-5718-99-01092-3
- Wolfgang Dahmen and Reinhold Schneider, Wavelets with complementary boundary conditions—function spaces on the cube, Results Math. 34 (1998), no. 3-4, 255–293. MR 1652724, DOI 10.1007/BF03322055
- Wolfgang Dahmen and Rob Stevenson, Element-by-element construction of wavelets satisfying stability and moment conditions, SIAM J. Numer. Anal. 37 (1999), no. 1, 319–352. MR 1742747, DOI 10.1137/S0036142997330949
- M. R. Hestenes, Extension of the range of a differentiable function, Duke Math. J. 8 (1941), 183–192. MR 3434
- H. Harbrecht, Wavelet Galerkin Schemes for the Boundary Element Method in Three Dimensions, Dissertation, Technische Universität Chemnitz, 2001.
- A. Barinka, T. Bartsch, K. Urban, J. Vorloeper, The Multilevel Library, Institut für Geometrie und Praktische Mathematik, RWTH Aachen, 2001.
- A. Kunoth, J. Sahner, Wavelets on manifolds: An optimized construction (extended version), SFB 611 Preprint #163, Universität Bonn, July 2004, revised, April 2005, available at http://www.ins.uni-bonn.de/~kunoth/papers/papers.html
- J. Sahner, On the Optimized Construction of Wavelets on Manifolds, Diploma Thesis (in English), Universität Bonn, September 2003.
Bibliographic Information
- Angela Kunoth
- Affiliation: Institut für Numerische Simulation, Universität Bonn, Wegelerstr. 6, 53115 Bonn, Germany
- Email: kunoth@ins.uni-bonn.de
- Jan Sahner
- Affiliation: Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB), Takustr. 7, 14195 Berlin, Germany
- Email: sahner@zib.de
- Received by editor(s): July 30, 2004
- Received by editor(s) in revised form: April 16, 2005
- Published electronically: May 3, 2006
- Additional Notes: This work has been supported by the Deutsche Forschungsgemeinschaft (SFB 611) at the Universität Bonn.
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 75 (2006), 1319-1349
- MSC (2000): Primary 65T60, 54C20; Secondary 42C40, 34B05
- DOI: https://doi.org/10.1090/S0025-5718-06-01828-X
- MathSciNet review: 2219031
Dedicated: Dedicated to Peter Deuflhard on the occasion of his 60th birthday