Spectral residual method without gradient information for solving large-scale nonlinear systems of equations
HTML articles powered by AMS MathViewer
- by William La Cruz, José Mario Martínez and Marcos Raydan;
- Math. Comp. 75 (2006), 1429-1448
- DOI: https://doi.org/10.1090/S0025-5718-06-01840-0
- Published electronically: April 11, 2006
- PDF | Request permission
Abstract:
A fully derivative-free spectral residual method for solving large-scale nonlinear systems of equations is presented. It uses in a systematic way the residual vector as a search direction, a spectral steplength that produces a nonmonotone process and a globalization strategy that allows for this nonmonotone behavior. The global convergence analysis of the combined scheme is presented. An extensive set of numerical experiments that indicate that the new combination is competitive and frequently better than well-known Newton-Krylov methods for large-scale problems is also presented.References
- Jonathan Barzilai and Jonathan M. Borwein, Two-point step size gradient methods, IMA J. Numer. Anal. 8 (1988), no. 1, 141–148. MR 967848, DOI 10.1093/imanum/8.1.141
- Stefania Bellavia and Benedetta Morini, A globally convergent Newton-GMRES subspace method for systems of nonlinear equations, SIAM J. Sci. Comput. 23 (2001), no. 3, 940–960. MR 1860971, DOI 10.1137/S1064827599363976
- Ernesto G. Birgin, José Mario Martínez, and Marcos Raydan, Nonmonotone spectral projected gradient methods on convex sets, SIAM J. Optim. 10 (2000), no. 4, 1196–1211. MR 1777088, DOI 10.1137/S1052623497330963
- E. G. Birgin, J. M. Martínez and M. Raydan, Algorithm 813: SPG - Software for convex-constrained optimization, ACM Transactions on Mathematical Software, 27, 2001, pp. 340–349.
- Ernesto G. Birgin, José Mario Martínez, and Marcos Raydan, Inexact spectral projected gradient methods on convex sets, IMA J. Numer. Anal. 23 (2003), no. 4, 539–559. MR 2011339, DOI 10.1093/imanum/23.4.539
- Peter N. Brown and Youcef Saad, Hybrid Krylov methods for nonlinear systems of equations, SIAM J. Sci. Statist. Comput. 11 (1990), no. 3, 450–481. MR 1047206, DOI 10.1137/0911026
- Peter N. Brown and Youcef Saad, Convergence theory of nonlinear Newton-Krylov algorithms, SIAM J. Optim. 4 (1994), no. 2, 297–330. MR 1273761, DOI 10.1137/0804017
- Yu-Hong Dai and Li-Zhi Liao, R-linear convergence of the Barzilai and Borwein gradient method, IMA J. Numer. Anal. 22 (2002), no. 1, 1–10. MR 1880051, DOI 10.1093/imanum/22.1.1
- John E. Dennis Jr. and Robert B. Schnabel, Numerical methods for unconstrained optimization and nonlinear equations, Prentice Hall Series in Computational Mathematics, Prentice Hall, Inc., Englewood Cliffs, NJ, 1983. MR 702023
- R. Fletcher, Low storage methods for unconstrained optimization, Computational solution of nonlinear systems of equations (Fort Collins, CO, 1988) Lectures in Appl. Math., vol. 26, Amer. Math. Soc., Providence, RI, 1990, pp. 165–179. MR 1066281
- Roger Fletcher, On the Barzilai-Borwein method, Optimization and control with applications, Appl. Optim., vol. 96, Springer, New York, 2005, pp. 235–256. MR 2144378, DOI 10.1007/0-387-24255-4_{1}0
- Maria Grazia Gasparo, A nonmonotone hybrid method for nonlinear systems, Optim. Methods Softw. 13 (2000), no. 2, 79–94. MR 1771922, DOI 10.1080/10556780008805776
- L. Grippo, F. Lampariello, and S. Lucidi, A nonmonotone line search technique for Newton’s method, SIAM J. Numer. Anal. 23 (1986), no. 4, 707–716. MR 849278, DOI 10.1137/0723046
- L. Grippo and M. Sciandrone, Nonmonotone Derivative Free Methods for Nonlinear Equations, Technical Report 01-05, DIS, Università di Roma “La Sapienza", 2005.
- C. T. Kelley, Iterative methods for linear and nonlinear equations, Frontiers in Applied Mathematics, vol. 16, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1995. With separately available software. MR 1344684, DOI 10.1137/1.9781611970944
- W. La Cruz, J. M. Martínez and M. Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems: Theory and experiments, Technical Report RT-04-08, Dpto. de Computacion, UCV, 2004. Available at www.kuainasi.ciens.ucv.ve/ccct/mraydan_pub.html.
- William La Cruz and Marcos Raydan, Nonmonotone spectral methods for large-scale nonlinear systems, Optim. Methods Softw. 18 (2003), no. 5, 583–599. MR 2015399, DOI 10.1080/10556780310001610493
- Dong-Hui Li and Masao Fukushima, A derivative-free line search and global convergence of Broyden-like method for nonlinear equations, Optim. Methods Softw. 13 (2000), no. 3, 181–201. MR 1785195, DOI 10.1080/10556780008805782
- F. Luengo, M. Raydan, W. Glunt, and T. L. Hayden, Preconditioned spectral gradient method, Numer. Algorithms 30 (2002), no. 3-4, 241–258. MR 1927505, DOI 10.1023/A:1020181927999
- José Mario Martínez, Practical quasi-Newton methods for solving nonlinear systems, J. Comput. Appl. Math. 124 (2000), no. 1-2, 97–121. Numerical analysis 2000, Vol. IV, Optimization and nonlinear equations. MR 1803295, DOI 10.1016/S0377-0427(00)00434-9
- Brigida Molina and Marcos Raydan, Preconditioned Barzilai-Borwein method for the numerical solution of partial differential equations, Numer. Algorithms 13 (1996), no. 1-2, 45–60. MR 1417682, DOI 10.1007/BF02143126
- J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, New York-London, 1970. MR 273810
- Marcos Raydan, On the Barzilai and Borwein choice of steplength for the gradient method, IMA J. Numer. Anal. 13 (1993), no. 3, 321–326. MR 1225468, DOI 10.1093/imanum/13.3.321
- Marcos Raydan, The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem, SIAM J. Optim. 7 (1997), no. 1, 26–33. MR 1430555, DOI 10.1137/S1052623494266365
Bibliographic Information
- William La Cruz
- Affiliation: Departamento de Electrónica, Computación y Control, Facultad de Ingeniería, Universidad Central de Venezuela, Caracas 1051-DF, Venezuela
- Email: wlacruz@elecrisc.ing.ucv.ve
- José Mario Martínez
- Affiliation: Department of Applied Mathematics, IMECC-UNICAMP, University of Campinas, CP 6065, 13081-970 Campinas SP, Brazil
- MR Author ID: 120570
- Email: martinez@ime.unicamp.br
- Marcos Raydan
- Affiliation: Departamento de Computación, Facultad de Ciencias, Universidad Central de Vene- zuela, Apartado 47002, Caracas 1041-A, Venezuela
- Email: mraydan@kuaimare.ciens.ucv.ve
- Received by editor(s): July 14, 2004
- Received by editor(s) in revised form: February 1, 2005
- Published electronically: April 11, 2006
- Additional Notes: The first author was supported by Agenda Petróleo UCV-PROJECT 97-003769.
The second author was supported by PRONEX-Optimization 76.79.1008-00, FAPESP (Grant 2001-04597-4), CNPq and FAEP-UNICAMP
The third author was supported by Agenda Petróleo UCV-PROJECT 97-003769. - © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 75 (2006), 1429-1448
- MSC (2000): Primary 49M05, 90C06, 90C56, 65K10
- DOI: https://doi.org/10.1090/S0025-5718-06-01840-0
- MathSciNet review: 2219036